

Table of contents

- 1. Brief context
- 2. Data source and samples
- 3. Postal traffic evolution and determinants
- 4. Methodological framework
- 5. Estimation, goodness-of-fit and forecast
- 6. Conclusions

1. Brief context

2. Data source and samples

Data source Source: Data from ANACOM, collected from postal services providers Traffic (domestic and outgoing international), by type of item: Correspondence Letters, editorial mail and direct mail Parcels Time span: quarterly data, from 1Q 2005

3. Traffic evolution and determinants

Explanatory variables

Table 1 - Variables considered that may affect postal traffic

Name	Description	Source
Unemployment	Total Unemployment	INE, Portugal
ESI_Index	Economic sentiment indicator	INE, Portugal
CCI_Index	Consumer confidence indicator	INE, Portugal
CPI	Consumer price index (12-month average growth rate)	INE, Portugal
GDP	Gross domestic product	INE, Portugal
Exports	Exports of goods and services	INE, Portugal
Penetration BB	Fixed broadband accesses, per 100 inhabitants	ANACOM

Methodological framework

Methodological approaches

- (1) ARIMA models
- (2) Decomposition models: exponential smoothing
- (3) Multiple linear regressions

Compare the results after estimation Error measures in the validation period Error measures in the Residual diagnostics and estimation period goodness-of-fit tests Out-of-sample • Root mean square error • Residual autocorrelation • Root mean squared • The appearance of (RMSE). and cross correlation forecast error (RMSFE) forecast plots, intuitive • Bayesian information plots reasonableness of the criterion (BIC) • Durbin-Watson statistic coefficients and the simplicity of the model. Akaike's information (serial correlation test); criterion (AIC) • Non-normality test: skewness / kurtosis; Shapiro-Wilk W statistic Heteroscedasticity test: Breusch-Pagan test / White's test • Misspecification test: Ramsey RESET test

5. Estimation, goodness-of-fit and forecast

5.1. Correspondence traffic | Estimation

ARIMA MODELS

(1.1) SARIMA (p,d,q) (P,D,Q)s:

 $\phi(B^s)\phi(B)\nabla^D_S\nabla^dy_t=\theta(B^s)\theta(B)\varepsilon_t$ SARIMA (0,1,1) (0,1,1)_4

(1.2) SARIMAX: with exogenous variable

 $\Phi(B^s)\phi(B)\nabla^D_S\nabla^d y_t = \Psi(B)X_t + \Theta(B^s)\theta(B)\varepsilon_t$

SARIMAX (2,1,1) (0,1,0)₄ | $X_t = \ln_GDP$

DECOMPOSITION MODELS

(1.3) Holt-Winters' Multiplicative

$$\begin{array}{lll} \text{level} & L_t &=& \alpha \frac{\mathcal{Y}_t}{S_{t-s}} + (1-\alpha)(L_{t-1}+b_{t-1});\\ \text{trend} & b_t &=& \beta(L_t-L_{t-1}) + (1-\beta)b_{t-1},\\ \text{seasonal} & S_t &=& \gamma \frac{\mathcal{Y}_t}{L_t} + (1-\gamma)S_{t-s}\\ \text{forecast} & F_{t+k} &=& (L_t+kb_t)S_{t+k-s}, \end{array}$$

MULTIPLE LINEAR REGRESSION

$$Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{2t} + \dots + \beta_p X_{pt} + \varepsilon_t$$

(1.4) Without exogenous variable:

- Linear trend: t
- Seasonal dummies: Q1, Q2, Q3
- Structural breaks: D4Q2007; D4Q2011 linear effect

(1.5) With exogenous variable:

- Exogenous variable: In(penetrationBB)
- Seasonal dummies: Q1, Q2, Q3
- Structural breaks: D4Q2011
- Interaction regressors

5.1. Correspondence traffic | Goodness-of-fit evaluation

	(1.1) SARIMA	(1.2) SARIMAX	(1.3) Holt-Winters' Multiplicative	(1.4) MLR	(1.5) MLR with In(PenetrationBB)
RMSE	25,54	25,25	23,01	23,26	26,68
AIC	-213,72	-217,62	(*)	-243,32	-222,63
BIC	-206,16	-203,69	(*)	-229,39	-208,71
Out-of-sample (RMSFE)**	24,46	25,16	20,31	20,95	25,25

Notes: (*) not comparable indicators;

(**) Comparison between predicted values to real values of the time series. The set forecasts to start of 1st quarter 2018 to the end of 2nd quarter 2018.

5.2. Parcels traffic | Estimation

ARIMA MODELS

(1.1) ARIMA (p,d,q):

 $\phi(B)\nabla^d y_t = \theta(B)\varepsilon_t$

ARIMA (4,1,0)

(1.2) ARIMAX: with exogenous variable

 $\Phi(B^s)\phi(B)\nabla^D_S\nabla^d y_t = \Psi(B)X_t + \theta(B^s)\theta(B)\varepsilon_t$

ARIMAX (0,1,0) (1,0,1)₄ | X_t =InPenetrationBB

DECOMPOSITION MODELS

(1.3) Holt-Winters' Additive

level $L_t = \alpha(y_t - S_{t-s}) + (1 - \alpha)(L_{t-1} + b_{t-1});$ trend $b_t = \beta(L_t - L_{t-1}) + (1 - \beta)b_{t-1}$,

seasonal $S_t = \gamma(y_t - L_t) + (1 - \gamma)S_{t-s}$

forecast $F_{t+k} = L_t + kb_t + S_{t+k-s}$,

MULTIPLE LINEAR REGRESSION

 $Y_t = \beta_0 + \beta_1 X_{1\mathsf{t}} + \beta_2 \mathsf{X}_{2\mathsf{t}} + \dots + \beta_\mathsf{p} \mathsf{X}_{\mathsf{p}\mathsf{t}} + \varepsilon_t$

(1.4) Without exogenous variable:

- Linear trend: t
- Seasonal dummies: Q2, Q3, Q4
- Structural breaks: D4Q2012; D1Q2014
- Interaction regressors

(1.5) With exogenous variable:

- **Exogenous variable:** In(penetrationBB)
- Seasonal dummies: Q4
- Structural breaks: D4Q2012; D1Q2014
- Interaction regressors

5.2. Parcels traffic | Goodness-of-fit evaluation

	(1.1) ARIMA	(1.2) ARIMAX	(1.3) Holt-Winters' Additive	(1.4) MLR	(1.5) MLR with In(PenetrationBB)
RMSE	61,69	57,70	50,27	41,32	48,06
AIC	-116,9	-121,8	(*)	-150,61	-138,71
BIC	-109,7	-112,8	(*)	-139,64	-129,57
Out-of-sample (RMSFE)**	20,55) 27,38	59,24	30,75	36,59

Notes: (*) not comparable indicators;

(**) Comparison between predicted values to real values of the time series. The set forecasts to start of 1st quarter 2018 to the end of 2nd quarter 2018.

6. Conclusion

IT sector has two different effects on postal sector – showed by Portuguese data

- Digitalization (e-government, e-substitution and e-invoice) has a negative impact on the correspondence postal traffic.
- E-commerce helped the parcels traffic to grow, due to the delivery of physical product brought through the Internet.

2

GDP is gaining importance again to explain postal traffic

- GDP lost its force to explain these series, mainly due the financial crisis. In recent years, it is gaining importance again, especially in the correspondence postal traffic.
- However, it has a negative effect on correspondence, in contrast with what happened in the past.

The decrease of the correspondence traffic is not expected to slow down soon, in Portugal

- Between 1Q2005 and 2Q2018, the best fitted model is Multiplicative Holt-Winters
- Forecasts show a decrease of correspondence traffic:
 - around 7% in 3Q2018 (from the previous year)
 - around 5% in 4Q2018 (from the previous year)
 - with an absolute error around 5 percentual points

The forecast parcels traffic shows a stabilization in Portugal, but may increase in the future, with the influence of other variables

- Between 1Q2007 and 2Q2018, the best fitted model is the Multiple Linear Regression, with a trend, seasonality dummies, a structural break dummy and no exogenous variables
- Forecast shows a stabilization around 10 million objects, with an absolute error around 3 percentual points (from the previous year)

