

Balancing carbon markets

FSR Climate online debate 28 October 2025

Inputs by EDF R&D

Why does the MSR need a re-design?

MSR has been instrumental to absorb historical surplus and restore confidence (Sitarz et al., 2024)

- Adequate because TNAC largely reflected past oversupply (invalidation provision was key)
- Efficiency gains by frontloading abatement efforts beyond hedging horizon (Quemin & Trotignon, 2021)

Increased uncertainty on the evolution of the ETS regulation and the functioning of the market

- Cap decrease toward 0, relaxing of the cap, inclusion of CDR, question of international credits,...
- As market gets ever smaller, relevant (changes in) quantities/hedging will be harder to gauge

MSR unable to provide enough price predictability to drive investments in decarbonization

- TNAC is not a reliable indicator of actual scarcity or tightness of the market
- MSR will be inactive when TNAC falls within thresholds, yet possibly with highly different developments
 - Hedging has some inertia, and captures only one segment of market operations
 - Which impact of hedging of Industrial actors linked to the CBAM compliance with CBAM certificates?

MSR should be re-designed to remain adequate and to increasingly provide more flexibility

- Transition from backward-looking to forward-looking market tightness management (Pahle et al., 2025)
- More responsive MSR required to adapt the supply (higher/lower) in a quicker way

Why would price based version of the MSR be fit for purpose?

The price seems a suitable, continuously available, and forward-looking indicator of anticipated market conditions

- ETS price would still be determined by supply/offer balance in response to supply changes set by given rules
- Already implemented in the ETS2 with the "safety valve"

Academic consensus that price-based supply adjustment mechanism would perform better (Perino et al, 2022; Borghesi et al., 2023)

Need for a symmetrical mechanism – adjusting supply upwards and downwards

- High price trigger(s?): crucial for competitiveness safety valve in case of high compliance costs
- Low price trigger(s?): critical to de-risk and incentivize low-carbon investment (Cason et al., 2023; Borghesi et al., 2025)
- Steps in between can further increase supply responsiveness and reduce volatility (Burtraw et al., 2022)

How to operationalize a price-based version of the MSR?

Main parameters to be defined

- Level, number of price triggers
- Type of indicator : quarterly (or other) average, rolling average,...
- Frequency of adjustment
- Volume of adjustment

Understand trade-offs between the different options with careful impact assessment

Decreasing relationship between the frequency and the volume of supply adjustment

Anticipating the possible evolutions of the parameter

Which rule for updating price triggers and adjustment volumes over time?

What lessons could be learned from RGGI and California-Québec about the design of their own rules?

- Which process could be developed to define such an evolution of the current design?
- → Such changes cannot happen overnight, the investigation/preparation should start asap based on foreign experience and academic analysis

References (not exhaustive)

Borghesi, S., Comincioli, N., Kort, P., Thijssen, J. J. J., & Vergalli, S. (2025). Brown Price and Green Firms: An ETS Price Floor for a Clean Transition? <u>Environmental and Resource Economics</u>, in press.

Borghesi, S., Pahle, M., Perino, G., Quemin, S., & Willner, M. (2023). The Market Stability Reserve in the EU Emissions Trading System: A Critical Review. <u>Annual Review of Resource Economics</u>, 15(1), 131–152.

Burtraw, D., Holt, C., Palmer, K., & Shobe, W. (2022). Price-Responsive Allowance Supply in Emissions Markets. <u>Journal of the Association of Environmental and Resource Economists</u>, 9(5), 851–884.

Cason, T. N., Stranlund, J. K., & de Vries, F. P. (2023). Investment Incentives in Tradable Emissions Markets with Price Floors. <u>Journal of the Association of Environmental and Resource Economists</u>, 10(2), 283–314.

Heijmans, R. J. R. K. (2023). Adjustable Emissions Caps and the Price of Pollution. <u>Journal of Environmental Economics and Management</u>, 118, 102793.

Pahle, M., Quemin, S., Osorio, S., Günther, C., & Pietzcker, R. (2025). The Emerging Endgame: The EU ETS on the Road Towards Climate Neutrality. Resource and Energy Economics, 81, 101476.

Perino, G., Ritz, R., & van Benthem, A. (2025). Overlapping Climate Policies. The Economic Journal, in press.

Perino, G., Willner, M., Quemin, S., & Pahle, M. (2022). The European Union Emissions Trading System Market Stability Reserve: Does It Stabilize or Destabilize the Market? Review of Environmental Economics and Policy, 16(2), 338–345.

Quemin, S., & Trotignon, R. (2021). Emissions Trading with Rolling Horizons. <u>Journal of Economic Dynamics and Control</u>, 125, 104099.

Sitarz, J., Pahle, M., Osorio, S., Luderer, G., & Pietzcker, R. (2024). EU Carbon Prices Signal High Policy Credibility and Farsighted Actors. Nature Energy, 9, 691–702.

