From Free to Fee How Allowance Allocation Affects ETS Performance

Marie Alder Eva Franzmeyer Benjamin Hattemer

International Conference on Ex-Post Evaluation of Emissions Trading 2025

June 2025

- Emission Trading Systems are key mitigation policy tools for Climate Change
- Share of worldwide emissions covered increased to almost 20% (World Bank, 2025)
- The design of ETS may be crucial for their performance (Grubb et al., 2022)
- Key feature: Allocation of allowances for free or sold to firms?
- \hookrightarrow How does the allocation mechanism affect ETS performance?

Emission Trading System

Allocation Mechanism - Free Allocation

Allocation Mechanism - Selling to Firm

- $\circ\,$ This paper: focus on the ${\bf EU}\,\,{\bf ETS}$
- **Reform**: Some firms lost $\approx 50\%$ of their free allowances
 - $\circ~$ **2018:** Official publication of the list of sectors losing free allowances
 - $\circ~$ **2021:** Implementation of the reform
- Goal: Increase the incentives of firms for decarbonization

Alder, Franzmeyer and Hattemer

Question

What is the effect of free allowance allocation on the environmental and economic performance of emission trading systems?

Setting

- $\circ~$ Policy: change in allocation rule of free allowances in EU ETS
- $\,\circ\,$ Manufacturing firm-level panel data (2014-2022)
- Event-study DiD estimation

Results

- $\circ~$ Paying for allowances decreases emissions by more than 10%
- $\circ~$ Similar decrease in turnover, employment and total assets

Before Reform:

- 1. Emission intensity $\geq 5\%$ & Trade intensity > 10%
- 2. Emission intensity $\geq 30\%$
- 3. Trade intensity > 30%

Before Reform:

- 1. Emission intensity $\geq 5\%$ & Trade intensity > 10%
- 2. Emission intensity $\geq 30\%$
- 3. Trade intensity > 30%

After Reform:

 $\circ\,$ Emission intensity $\times\,$ Trade intensity > 20%

Descriptive Trends

Treatment Status - control - treatment

Sample: Firm-by-year balanced panel from 2014 to 2022

- 1. Emissions
- 2. Economic Performance
- 3. Treatment Status

Summary Statistics

	Control					Treatment				
	Ν	Mean	Min	Max	SD	Ν	Mean	Min	Max	SD
Financial Variables										
Turnover	1484	635100	424	18946398	1589469	953	2982297	7297	106893328	10676704
Sales	1484	617975	424	18873591	1570023	953	2798936	912	101213625	10180572
Employees	1280	1261	1	34328	4001	885	8894	0	429367	41254
Emissions										
Emissions	1630	52203	434	1178053	98719	1060	34052	107	495454	45964
Free / Emissions $(\%, 2020)$	163	117	0	664	85	105	111	0	760	92
Free / Emissions ($\%$, 2021)	163	89	13	484	65	105	54	5	403	63

Event Study

$$\ln(\mathbf{y}_{i,s,t}) = \alpha_i + \gamma_t + \sum_{k=-3}^{6} \beta_k(\mathbb{1}[t - c_i = k]) + \varepsilon_{i,s,t}$$

- $\circ y_{i,s,t}$ is the outcome of interest for firm *i* in sector *s* in time *t*
- α_i and γ_t are firm and time fixed effects
- Standard errors are clustered at the sector and time level
- $c_i \in \{-\infty, 2018\}$ is equal to 2018 if the firm is treated, $-\infty$ otherwise

Emissions

Economic Outcomes

COVID and Ukraine
 Firm Exits
 Restriction Sensitivity
 Detailed Timit
 From Free to Fee
 Alder, Franzmeyer and Hattemer

1. Selling allowances decreases emissions

- Could not be shown empirically before (Zaklan, 2023)
- This paper studies multiple sectors with larger share of the economy with heterogeneous and tradable goods

2. Also economic outcomes of firms are affected

- Trade-off between emission reduction and economic performance new (Colmer et al., 2024; Dechezleprêtre et al., 2023)
- Different variation: In- or outside the ETS
- Different time: Most allowances for free in early phases and very low prices
- $\circ~$ Magnitude comparable with firms participating

References I

- Colmer, J., Martin, R., Muûls, M., and Wagner, U. J. (2024). Does pricing carbon mitigate climate change? firm-level evidence from the european union emissions trading system. Review of Economic Studies, page rdae055.
- Dechezleprêtre, A., Nachtigall, D., and Venmans, F. (2023). The joint impact of the european union emissions trading system on carbon emissions and economic performance. Journal of Environmental Economics and Management, 118:102758.
- Grubb, M., Jordan, N. D., Hertwich, E., Neuhoff, K., Das, K., Bandyopadhyay, K. R., Van Asselt, H., Sato, M., Wang, R., Pizer, W. A., et al. (2022). Carbon leakage, consumption, and trade. <u>Annual Review of Environment and Resources</u>, 47:753–795.
 World Bank (2025). Carbon pricing dashboard. Accessed: 2025-06-06.
- Zaklan, A. (2023). Coase and cap-and-trade: Evidence on the independence property from the european carbon market. <u>American Economic Journal: Economic Policy</u>, 15(2):526–558.

Appendix

Rule:

- $A_{ist} = B_s \cdot HAL_{i\bar{t}} \cdot R_t \cdot \mathbf{CLEF}_{st}$
 - 1. B_s: average allowances required by 10% most efficient installations in sector s
 - 2. HAL_{*i* \bar{t}}: median annual activity level of installation *i* in reference period \bar{t}
 - 3. R_t : ensures to not go beyond the overall cap at time t
 - 4. **CLEF**_{st}: if sector s is at "risk of carbon leakage", it is equal to 100%

Back

For installation i in the steel sector:

- $\circ~B_s$: 1.8 allowances per ton of steel
- $\,\circ\,$ HAL_{i\bar{t}}: 200,000 tons of steel produced annually
- $\circ R_{it}$: 0.9 (to align with the total EU ETS cap)
- CLEF_{st}: on the list (1.0) or not (0.3)

$$A_{ist} = B_s \cdot HAL_{i\bar{t}} \cdot R_{it} \cdot CLEF_{st}$$

= 1.8 \cdot 200,000 \cdot 0.9 \cdot 1.0 (0.3)
= 324,000 (97,200) allowances.

▶ Back

$\text{Emission intensity} = \frac{(\text{direct emissions} \cdot \text{auctioning factor} + \text{indirect emissions}) \cdot 30 \text{€}/\text{ton}CO_2}{\text{gross value added at factor costs}}$

Trade intensity =
$$\frac{\text{imports} + \text{exports}}{\text{imports} + \text{production}}$$

Back

Restriction on Emission intensity

Figure: Distribution Before Restriction

Figure: Distribution After Restriction

▶ Back

Restriction on Emissions

Figure: Distribution Before Restriction

Figure: Distribution After Restriction

Back

Restriction

Figure: Estimation without restriction (left panel) vs. with restriction (right panel)

▶ Back

Timing

Back

COVID and the Ukraine War: Emissions

- **COVID-affected sector:** Pharmaceutical manufacturing (C2120)
- War-affected sectors: Weapons and shipbuilding (C2540, C3011)

Back

From Free to Fee

COVID and the Ukraine War: Turnover

- **COVID-affected sector:** Pharmaceutical manufacturing (C2120)
- War-affected sectors: Weapons and shipbuilding (C2540, C3011)

Back

From Free to Fee

Firm Entry and Exit

Exit year: no verified emissions or free allowances, expired permit and closed account **Entry year:** 1st year with free allowances or verified emissions (active permit & account)

Firm Exits Over Time

Firm Entries Over Time