Emission Trading and Overlapping Environmental Support: Installation-level Evidence from the EU ETS

Klaas Mulier Marten Ovaere Leo Stimpfle¹

Ghent University

FSR Climate Annual Conference 2024 November 28th, 2024

¹leonard.stimpfle@ugent.be

- EU Emissions Trading System (EU ETS) creates carbon price
 - Market for tradeable emission permits with progressively tightening cap on annual emissions of large emitters
 - Extensively studied (Fabra and Reguant, 2014; Calel and Dechezleprêtre, 2016; Calel, 2020; Abrell et al., 2022; Dechezleprêtre et al., 2023; Colmer et al., 2024)

- ► EU Emissions Trading System (EU ETS) creates carbon price
 - Market for tradeable emission permits with progressively tightening cap on annual emissions of large emitters
 - Extensively studied (Fabra and Reguant, 2014; Calel and Dechezleprêtre, 2016; Calel, 2020; Abrell et al., 2022; Dechezleprêtre et al., 2023; Colmer et al., 2024)
- Increasing number of environmental support policies at national level
 - Evidence on effects of some policies in isolation (Martin et al., 2014; Abrell and Kosch, 2022; Ferrara and Giua, 2022; Gerster and Lamp, 2024; Basaglia et al., 2024)

- EU Emissions Trading System (EU ETS) creates carbon price
 - Market for tradeable emission permits with progressively tightening cap on annual emissions of large emitters
 - Extensively studied (Fabra and Reguant, 2014; Calel and Dechezleprêtre, 2016; Calel, 2020; Abrell et al., 2022; Dechezleprêtre et al., 2023; Colmer et al., 2024)
- Increasing number of environmental support policies at national level
 - Evidence on effects of some policies in isolation (Martin et al., 2014; Abrell and Kosch, 2022; Ferrara and Giua, 2022; Gerster and Lamp, 2024; Basaglia et al., 2024)

Interaction between EU ETS and overlapping national support understudied

- Simulation-based evidence (Anke et al., 2020; Delarue and Van den Bergh, 2016; Bruninx et al., 2020)
- This paper provides novel empirical evidence

"In the first half of 2017, we decided to retrofit our hard coal-fired power plants Eemshaven and Amer 9 for co-firing with biomass. The Dutch state approved subsidies of up to €2.6 billion for the two plants."

RWE AG, annual report 2017

"The [Memorandum of Understanding] states the commitment of ArcelorMittal and the Government of Spain to transition towards a decarbonised steel industry. [...] The Government of Spain is exploring regulatory instruments to support the industry in the transition process, such as compensation programmes for electricity-intensive industries, tools to promote improved energy efficiency [...]."

ArcelorMittal, press release 13/07/2021

- Quantify national environmental support overlapping with the EU ETS
 - renewable energy support for power producers: more than 260 billion EUR since 2012 (on average ~ 30 EUR per tCO2)
 - cost compensation for energy-intensive undertakings: more than 100 billion EUR since 2012 (on average ~ 7 EUR per tCO2)

- Quantify national environmental support overlapping with the EU ETS
 - renewable energy support for power producers: more than 260 billion EUR since 2012 (on average ~ 30 EUR per tCO2)
 - cost compensation for energy-intensive undertakings: more than 100 billion EUR since 2012 (on average ~ 7 EUR per tCO2)
- Estimate effect of unexpected increase in carbon prices
 - difference-in-differences exploiting variation in carbon price exposure
 - high-exposed installations reduce emissions significantly after the shock (~ 40% for power producers, ~ 4% for manufacturers)

- Quantify national environmental support overlapping with the EU ETS
 - renewable energy support for power producers: more than 260 billion EUR since 2012 (on average ~ 30 EUR per tCO2)
 - cost compensation for energy-intensive undertakings: more than 100 billion EUR since 2012 (on average ~ 7 EUR per tCO2)
- Estimate effect of unexpected increase in carbon prices
 - difference-in-differences exploiting variation in carbon price exposure
 - high-exposed installations reduce emissions significantly after the shock (~ 40% for power producers, ~ 4% for manufacturers)

Estimate interactions of national environmental support with the EU ETS

- triple difference exploiting variation in national environmental support
- positive interaction: power producers in countries with high levels of renewable support reduce emissions significantly more (by ~ 20 p.p.)
- negative interaction: manufacturers in countries with high levels of cost compensation reduce emissions significantly less (by ~ 6 p.p.)

Empirical Strategy

Empirical strategy

Unexpected regulatory tightening of the EU ETS in 2017 details

$$\mathsf{Post}_t = \begin{cases} 1, & \text{if } t > 2016, \\ 0, & \text{else.} \end{cases}$$
(1)

Empirical strategy

Unexpected regulatory tightening of the EU ETS in 2017 details

$$\mathsf{Post}_t = \begin{cases} 1, & \text{if } t > 2016, \\ 0, & \text{else.} \end{cases}$$
(1)

Carbon price exposure depends on emission intensity details

$$\mathbb{1}^{\mathsf{CPE}_i} = \begin{cases} 1, & \text{if emitter } i \text{ is high-exposed}, \\ 0, & \text{else.} \end{cases}$$

(2)

Empirical strategy

Unexpected regulatory tightening of the EU ETS in 2017 details

$$\mathsf{Post}_t = \begin{cases} 1, & \text{if } t > 2016, \\ 0, & \text{else.} \end{cases}$$
(1)

Carbon price exposure depends on emission intensity details

$$\mathbb{1}^{\mathsf{CPE}_i} = egin{cases} 1, & ext{if emitter } i ext{ is high-exposed}, \ 0, & ext{else}. \end{cases}$$

Variation in overlapping national support details

$$\mathbb{1}_{cj}^{\alpha} = \begin{cases} 1, & \text{if pre-shock support in country-industry } cj \text{ is high,} \\ 0, & \text{else.} \end{cases}$$
(3)

(2)

Empirical specification

Difference-in-differences: the effect of the carbon price shock

Empirical specification

Difference-in-differences: the effect of the carbon price shock

$$\mathsf{Emissions}_{it} = \beta_0 + X_{it} + \lambda_i + \tau_t + \epsilon_{it} \\ + \beta_1 \times \mathsf{Post}_t \times \mathbb{1}^{\mathsf{CPE}_i}$$

Triple difference: interaction with overlapping national support

$$\begin{aligned} \mathsf{Emissions}_{it} &= \beta_0 + X_{it} + \lambda_i + \tau_t + \epsilon_{it} \\ &+ \beta_1 \times \mathsf{Post}_t \times \mathbb{1}^{\mathsf{CPE}_i} \\ &+ \beta_2 \times \mathsf{Post}_t \times \mathbb{1}^{\mathfrak{cp}}_{cj} \\ &+ \beta_3 \times \mathsf{Post}_t \times \mathbb{1}^{\mathsf{CPE}_i} \times \mathbb{1}^{\mathfrak{cp}}_{cj} \end{aligned}$$
(5)

(4)

Empirical specification

Difference-in-differences: the effect of the carbon price shock

$$\mathsf{Emissions}_{it} = \beta_0 + X_{it} + \lambda_i + \tau_t + \epsilon_{it} \\ + \beta_1 \times \mathsf{Post}_t \times \mathbb{1}^{\mathsf{CPE}_i}$$

Triple difference: interaction with overlapping national support

$$\begin{aligned} \mathsf{Emissions}_{it} &= \beta_0 + X_{it} + \lambda_i + \tau_t + \epsilon_{it} \\ &+ \beta_1 \times \mathsf{Post}_t \times \mathbb{1}^{\mathsf{CPE}_i} \\ &+ \beta_2 \times \mathsf{Post}_t \times \mathbb{1}^{\alpha}_{cj} \\ &+ \beta_3 \times \mathsf{Post}_t \times \mathbb{1}^{\mathsf{CPE}_i} \times \mathbb{1}^{\alpha}_{ci} \end{aligned}$$
(5)

▶ Installation fixed effects λ_i and year fixed effects τ_t

Also account for time-varying heterogeneity at year-industry-activity (τ¹_{tja}), year-country (τ²_{tc}), year-industry-activity-country (τ³_{tjac})

(4)

Power producers and renwable energy support

Effect of the carbon price shock on power producers descriptives event study

	(1)	(2)
$Post_t imes \mathbb{1}^{CPE_i}$	-0.516*** (0.056)	-0.674*** (0.061)
	(0.000)	(0.001)
Dependent variable	Emissions	Emissions
Fixed effects	λ_{i} , $ au_{t}$	λ_{i} , $ au_{tc}^{2}$
Energy price controls	Yes	Yes
Cluster variable	Installation	Installation
Clusters	832	831
Observations	9,114	9,102
Pseudo <i>R</i> ²	0.939	0.944
Estimator	Poisson QML	Poisson QML

	(1)	(2)	
	-0.364***	-0.517***	
$Post_t \times \mathbb{I}^{d \times d}$	(0.063)	(0.062)	
$Post_t imes \mathbb{1}^{CPE_i} imes \mathbb{1}_{cj}^{res}$	-0.393***	-0.341***	
	(0.110)	(0.129)	
Dependent variable	Emissions	Emissions	
Fixed effects	λ_i , $ au_t$	λ_{i} , $ au_{tc}^{2}$	
Energy price controls	Yes	Yes	
Cluster variable	Installation	Installation	
Clusters	832	831	
Observations	9,114	9,102	
Pseudo R ²	0.940	0.944	
Estimator	Poisson QML	Poisson QML	

Manufacturing and compensation for energy-intensive undertakings

The effect of the carbon price shock on manufacturing descriptives event study

	(1)	(2)	(3)	(4)
$Post_t imes \mathbb{1}^{CPE_i}$	-0.032**	-0.032**	-0.035***	-0.035***
	(0.016)	(0.014)	(0.014)	(0.013)
Dependent variable Fixed effects Energy price controls	$\begin{array}{c} Emissions \\ \lambda_i, \ \tau^1_{tja} \\ No \end{array}$	$\begin{matrix} Emissions \\ \lambda_i, \ \tau^1_{tja} \\ Yes \end{matrix}$	$\begin{array}{c} Emissions \\ \lambda_i, \ \tau^3_{tjac} \\ No \end{array}$	$\begin{array}{c} Emissions \\ \lambda_i, \ \tau^3_{tjac} \\ Yes \end{array}$
Cluster variable	Installation	Installation	Installation	Installation
Clusters	2,873	2,873	2,712	2,712
Observations	31,535	31,535	29,747	29,747
Pseudo <i>R</i> ²	0.988	0.988	0.990	0.990
Estimator	Poisson QML	Poisson QML	Poisson QML	Poisson QML

Compensation for energy-intensive undertakings descriptives exposure event study

	(1)	(2)	(3)	(4)
$Post_t imes \mathbb{1}^{CPE_i}$	-0.054**	-0.053***	-0.063***	-0.063***
	(0.021)	(0.019)	(0.020)	(0.018)
$Post_t \times \mathbb{1}^{CPE_i} \times \mathbb{1}_{cj}^{eiu}$	0.064**	0.060**	0.079***	0.079***
	(0.030)	(0.027)	(0.025)	(0.023)
Dependent variable	Emissions	Emissions	Emissions	Emissions
Fixed effects	λ_i τ_{ij}^1	λ_i τ_{ii}^1	λ_i $\tau_{i=1}^3$	λ_i $\tau_{i=1}^3$
Energy price controls	No	Yes	No	Yes
6/ [
Cluster variable	Installation	Installation	Installation	Installation
Clusters	2,873	2,873	2,712	2,712
Observations	31,535	31,535	29,747	29,747
Pseudo R^2	0.988	0.988	0.990	0.990
Estimator	Poisson QML	Poisson QML	Poisson QML	Poisson QML

National environmental support overlapping with the EU ETS is generous in aggregate and heterogneous across EU member states

Conclusion

- National environmental support overlapping with the EU ETS is generous in aggregate and heterogneous across EU member states
- ▶ We find significant interactions between the EU ETS and national support
 - positive interaction with renewable energy support for power producers
 - negative interaction with cost compensation for energy-intensive industries

Conclusion

- National environmental support overlapping with the EU ETS is generous in aggregate and heterogneous across EU member states
- ▶ We find significant interactions between the EU ETS and national support
 - positive interaction with renewable energy support for power producers
 - negative interaction with cost compensation for energy-intensive industries
- Currently investigating underlying mechanisms
 - changes in output (e.g, partial cessations or capacity extensions)
 - retrofits of installations (e.g., biomass co-firing)
 - investments in new installations (e.g., electric arc furnaces)

Thanks! Draft available here.

Appendix

Carbon price exposure

Carbon price exposure

Renewable energy support **Dack**

4 / 17

0

Renewable energy support **Dack**

Power baseline **back**

1^{CPE}ⁱ − 0 · · • · 1

5/17

Power baseline **back**

Renewable energy support

1 ^{CPE₄} --- 0 --- 1

Renewable energy support

Manufacturing baseline **back**

1 ^{CPE₄} - 0 - + 1

Manufacturing baseline (back)

Compensation for energy-intensive undertakings (back)

. **CPE**₄ -**●** 0 - • ● 1

Carbon price exposure of manufacturing installations **Deck**

Compensation for energy-intensive undertakings (back)

13 / 17

References

References I

- Abrell, J., Cludius, J., Lehmann, S., Schleich, J., and Betz, R. (2022). Corporate Emissions-Trading Behaviour During the First Decade of the EU ETS. *Environmental and Resource Economics*, 83(1):47–83.
- Abrell, J. and Kosch, M. (2022). Cross-country spillovers of renewable energy promotion—The case of Germany. *Resource and Energy Economics*, 68:101293.
- Anke, C.-P., Hobbie, H., Schreiber, S., and Möst, D. (2020). Coal phase-outs and carbon prices: Interactions between EU emission trading and national carbon mitigation policies. *Energy Policy*, 144:111647.
- Basaglia, P., Isaksen, E., and Sato, M. (2024). Carbon pricing, compensation and competitiveness: Lessons from UK manufacturing. https://www.lse.ac.uk/granthaminstitute/publication/carbon-pricing-compensationand-competitiveness-lessons-from-uk-manufacturing/.
- Bruninx, K., Ovaere, M., and Delarue, E. (2020). The long-term impact of the market stability reserve on the EU emission trading system. *Energy Economics*, 89:104746.

References II

- Calel, R. (2020). Adopt or Innovate: Understanding Technological Responses to Cap-and-Trade. *American Economic Journal: Economic Policy*, 12(3):170–201.
- Calel, R. and Dechezleprêtre, A. (2016). Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market. *The Review of Economics and Statistics*, 98(1):173–191.
- Colmer, J., Martin, R., Muûls, M., and Wagner, U. J. (2024). Does Pricing Carbon Mitigate Climate Change? Firm-Level Evidence from the European Union Emissions Trading System. *The Review of Economic Studies*, page rdae055.
- Dechezleprêtre, A., Nachtigall, D., and Venmans, F. (2023). The joint impact of the European Union emissions trading system on carbon emissions and economic performance. *Journal of Environmental Economics and Management*, 118:102758.
- Delarue, E. and Van den Bergh, K. (2016). Carbon mitigation in the electric power sector under cap-and-trade and renewables policies. *Energy Policy*, 92:34–44.

References III

- Fabra, N. and Reguant, M. (2014). Pass-Through of Emissions Costs in Electricity Markets. *American Economic Review*, 104(9):2872–2899.
- Ferrara, A. R. and Giua, L. (2022). Indirect cost compensation under the EU ETS: A firm-level analysis. *Energy Policy*, 165:112989.
- Gerster, A. and Lamp, S. (2024). Energy Tax Exemptions and Industrial Production. *The Economic Journal*, page ueae048.
- Martin, R., de Preux, L. B., and Wagner, U. J. (2014). The impact of a carbon tax on manufacturing: Evidence from microdata. *Journal of Public Economics*, 117:1–14.