Mitigating Farmland Biodiversity Loss: A Bio-Economic Model of Land Consolidation and Pesticide Use

Elia Moretti & Michael Benzaquen

The role of ecosystem services

The role of ecosystem services

[2] World Wildlife Fund (WWF) and Zoological Society of London

[3] Birdlife International and International Union for Conservation of Nature

Parameters

Specific focus on:

- France
- Wheat
- 1990-2020

Section	Notation	Description	Value	Group
Initialization	N_0	Number of farms	1006120	\mathbf{M}
	$ar{P}_0$	Average pesticide use $[kg \cdot ha^{-1}year^{-1}]$	5	\mathbf{M}
	$ar{y}_0$	Average yield $[ton \cdot ha^{-1}year^{-1}]$	7	\mathbf{M}
	π_0	Potential pest damage $[year^{-1}]$	0.3	\mathbf{M}
	r_0	Average return on investment $[year^{-1}]$	0.05	\mathbf{M}
	D	Demand $[ton \cdot year^{-1}]$	$21\mathrm{e}7$	\mathbf{E}
Ecological	$r_{arepsilon}$	Intrinsic growth rate [year ⁻¹]	0.1	Μ
factors	μ	Carrying capacity weights	0.9	\mathbf{E}
	a	Pest-biodiversity nonlinearity	0.5	\mathbf{E}
Production	$y_{ m max}$	Maximum yield $[ton \cdot ha^{-1}year^{-1}]$	8.5	Μ
factors	$P_{ m ref}$	Reference pesticide $[kg \cdot ha^{-1}year^{-1}]$	10	\mathbf{E}
	$\operatorname{std}(\xi)$	Production noise	0.05	\mathbf{M}
Other economic	α	Price frictions		С
factors	$p_{ m p}$	Pesticide price $[\in \cdot kg^{-1}]$	10	\mathbf{M}
	\mathcal{C}_{O}	Operating costs $[\in \cdot ha^{-1}year^{-1}]$	500	\mathbf{M}
	$\mathcal{C}_{ ext{NO}}$	Non-operating costs $[\in \cdot ha^{-1}year^{-1}]$	600	\mathbf{M}
	b	Economy of scale	0.9	\mathbf{M}
	${\mathcal S}$	Total subsidies budget $[\in \cdot \text{ year}^{-1}]$	8e9	\mathbf{M}
Technology	η	Profit share for technology		С
adoption	$\mathcal{P}_{ ext{ref}}$	Reference profit for technology $[\in \cdot \text{year}^{-1}]$		\mathbf{C}
-	$v_{ m max}$	Maximum efficiency gain [year ⁻¹]		\mathbf{C}
Behavioural	β	Land adjustment speed [year ⁻¹]		С
factors	$r_{ m ref}$	Reference return on investment $[year^{-1}]$	0.05	\mathbf{E}
	γ	Pesticide adjustment speed		\mathbf{C}
	$\stackrel{\cdot}{\lambda}$	Yield target adjustment speed		\mathbf{C}

The Calibration

0

The Role of Subsidies

1

Calibration

	Description	Sampling range	Optimal	10th Percentile	90th Percentile
α	Price frictions	[0.01,0.1]	0.08	0.03	0.09
λ	Yield target adjustment speed	[0.1,0.5]	0.2	0.1	0.5
γ	Pesticide adjustment speed	[1.0, 3.5]	3.0	1.0	3.5
eta	Land adjustment speed	[0.4, 0.5]	0.45	0.39	0.48
η	Profit share for technology	[0.05,0.5]	0.15	0.1	0.40
$\mathcal{P}_{ ext{ref}}$	Reference profit for technology	[150, 1500]	1000.0	300.0	1300.0
$ u_{ m max}$	Maximum efficiency gain	[0.05,0.5]	0.10	0.06	0.21
$\overline{\Delta e}$	Average efficiency gain		0.025	0.019	0.028
R^2	R-squared		0.719	0.713	0.682
\bar{R}^2	Adjusted R-squared		0.716	0.710	0.679

