Lost in Aggregation: The Local Environmental and Welfare Effects of Large Industrial Shutdowns

Philipp Bothe

Paris School of Economics & World Inequality Lab

FSR Climate Conference 2024

November 28, 2024

Roadmap

Motivation

Data

The Impact of Large Industrial Shutdowns

The Amenity Effects of Industrial Closures

Conclusion

Structural Transformation in Germany Industrial Employment

The New Hork Eimes

Germany Closes Its Last Black Coal Mine

🗄 Share full article 📣 🎵

The Prosper-Haniel coal mine in Germany was closed with a ceremony last Friday. The black coal it produced helped fuel the country's industry. Christophe Gateau/DPA, via Agence France Presse – Getty Images

By The Associated Press Dec. 24, 2018

East Germany's old mines transformed into new lake district

Despite a €2.2bn regeneration programme, the Lusatian Lake District project, on land once occupied by the GDR's industrial heartland, remains relatively unknown to noneast Germans. So we took a tour ...

C What a dive ... a floating house on Gelerswalder lake, east Germany. Photograph: Alamy

his was once one of the dittiest areas in East Germany." says Sören, my tour guide from IBA Tours, as our bikes swoosh through the Lusatian Lake District. "When I was growing up here, before the Wall fell, we never hung our laundry outside, and we never wore white socks, because we knew they wouldn't be white after a few minutes. The coal dust was everywhere, all the time."

Roadmap

Motivation

Data

The Impact of Large Industrial Shutdowns

The Amenity Effects of Industrial Closures

Conclusion

Data: EEA Industrial Reporting Database <a>Industrial Composition

- Combines previous reporting requirements from E-PRTR and IED
- Two reporting thresholds:
 - pollutant specific (e.g. 100t of nitrogen oxides per year)
 - installation specific (e.g. heat input >= 50 MW for thermal power stations)
- Covers almost 100,000 facilities in the EU and partner countries since 2007 10,400 of which are located in Germany
- New release contains information on the operating status of reporting facilities

Data: Socio-Economic and Real Estate Information

- Socio-Economic Data at 1km × 1km grid cell level from RWI-GEO-GRID for 2005 & 2009-2021 (Breidenbach and Eilers, 2018)
- Real estate data on house/apartment sales and rents at the object level from *Immobilienscout24* (Schaffner and Thiel, 2024)
- \Rightarrow Panel of \approx 2 million grid cell year observations

Data: Air Pollution & Weather

- $PM_{2.5}$ reanalysis raster data from van Donkelaar et al. (2021) at $0.01^{\circ} \times 0.01^{\circ}$ resolution
- Weather data from CRU at East Anglia University ($0.5^{\circ} \times 0.5^{\circ}$ resolution) (Harris et al., 2020)
- Fowlie et al. (2019) show attrition in remote sensing PM_{2.5} data at high pollution levels Attrition Plot

Mean Ambient PM2.5 Concentration 2021

Roadmap

Motivation

Data

The Impact of Large Industrial Shutdowns

The Amenity Effects of Industrial Closures

Conclusion

The Role of Industrial Facilities in Pollution Exposure

$$Y_{nt} = \sum_{s \neq -1} \theta_s \times \mathbb{1}[Closure_{nt}] \times \mathbb{1}[t - \tau_n = s] + C_{nt}\beta' + \alpha_n + \omega_{l \times t} + \epsilon_{nt}$$
(1)

- Y_{nt}: Outcome of interest (PM2.5, housing prices, etc) in grid cell n in year t
- *Closure_{nt}* : indicator for facility closure affecting grid cell n in year t
- *C*_{nt}: vector of weather controls
- τ_n year of **first** treatment for grid cell n

Model estimated using the two-stage estimator proposed in Gardner et al. (2024)

Estimation Sample

Effect of Plant Closures on PM2.5 Concentration

Effect of Plant Closures on PM2.5

Dependent Variable:		PM2.5					
Model:	(1)	(2)	(3)				
Closure	-0.1856***	-0.1909***	-0.1990***				
	(0.0546)	(0.0523)	(0.0525)				
$Closure \times Downwind$							
Fixed Effects							
Grid Cell	Yes	Yes	Yes				
Bundesland $ imes$ Year	Yes	Yes					
Year			Yes				
Weather Controls		Yes	Yes				
Mean (SD) at t-1		11.30 (1.72)					
Observations	223,801	223,801	223,801				
Standard errors clustered by municipality Signif, Codes: ***: 0.01. **: 0.05. *: 0.1							

Effect of Plant Closures on PM2.5

Dependent Variable: Model:	(1)	PM2.5 (2)	(3)
Closure	-0.1856*** (0.0546)	-0.1909*** (0.0523)	-0.1990*** (0.0525)
$\textbf{Closure} \times \textbf{Downwind}$	-0.2141*** (0.0643)	-0.2157*** (0.0600)	-0.2221*** (0.0598)
Fixed Effects Grid Cell Bundesland × Year Year	Yes Yes	Yes Yes	Yes Yes
Weather Controls		Yes	Yes
Mean (SD) at t-1		11.30 (1.72)	
Observations	223,801	223,801	223,801
Standard errors clustered	d by municipali	tv	

Standard errors clustered by municipality Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Treatment Effect Heterogeneity by Income Decile

Effect of Plant Closures on Household Income

Effect of Plant Closures on Local Income Triple Diff Unemployment Controls Rud et al (2024)

Outcome: Log Disposable Household Income

Aggregate A High Industry Employment Low Industry Employment

Spatial Distribution of Income Losses

Effect of Plant Closures on Housing Prices

Effect of Plant Closures on Housing Prices Unemployment Controls US Estimate

Outcome: Log Housing Price

Roadmap

Motivation

Data

The Impact of Large Industrial Shutdowns

The Amenity Effects of Industrial Closures

Conclusion

Consider the most simple version of a Rosen-Roback framework as in Bartik et al. (2019) :

$$\max_{\substack{c,h\\c,h}} u_{ln} = A_n \cdot h^{\alpha} \cdot c^{1-\alpha} \cdot \theta_{ln}$$

s.t. $h \cdot p_n + c = w_n$.

Assume that:

- every worker inelastically supplies one unit of labor in the neighborhood they live in (i.e. no commuting to work in a different neighborhood)
- the taste shock θ_{ln} is drawn from a TII EV distribution

Indirect utility of living in neighborhood n is given by

$$U_{ln}=rac{A_nw_n}{h_n^lpha} heta_{ln}$$

Hence, the probability that a worker chooses neighborhood n over any neighborhood r is given by

$$P\Big(\frac{A_n w_n}{h_n^{\alpha}}\theta_{nl} \geq \frac{A_r w_r}{h_r^{\alpha}}\theta_{rl}\Big) \qquad \forall r \neq n.$$

Using the assumption that $\theta_{ln} \sim F(\theta_n) = exp(-\theta^{-\phi})$, the share of workers living in neighborhood n can be expressed as

$$m{s}_n = rac{\left(rac{A_n w_n}{h_n^lpha}
ight)^\phi}{\sum_{r=1}^N \left(rac{A_r w_r}{h_r^lpha}
ight)^\phi}.$$

Let $R_n = L \cdot s_n$ the population in neighborhood n

Rearranging the previous expression for s_n gives an expression of amenities in neighborhood n as a function of observables and the parameters ϕ and α

$$ln(A_n) = \frac{1}{\phi} ln(R_n) + \alpha ln(h_n) - ln(w_n) - \frac{1}{\phi} ln(L) + \frac{1}{\phi} ln\left(\sum_{r=1}^{N} \frac{A_r w_r}{h_r^{\alpha}}\right)^{\phi}$$

- ϕ = 4.56 based on a recent estimate for Germany by Krebs and Pflüger (2023)
- $\alpha \in (0.2; 0.4)$ based on Monte et al. (2018); Quentel (2023)

Effect of Plant Closures on log Amenities

Roadmap

Motivation

Data

The Impact of Large Industrial Shutdowns

The Amenity Effects of Industrial Closures

Conclusion

Conclusion

- Significant PM2.5 exposure gap between richest and poorest neighborhoods in Germany a result that is masked in more aggregate data
- Industrial Shutdowns lead to improved local air quality and reduce exposure gap locally avoided mortality cost from local PM2.5 reductions \sim € 1.2 3.2 billion
- Total annual household income losses from shutdowns amount to € 0.9 1.7 billion (0.2 - 0.4% of public spending)
- No evidence for amenity gains in neighborhoods surrounding closed sites

Thank you for your attention!

philipp.bothe@psemail.eu

WORKING PAPER

Roadmap

Appendix

Descriptive Results

References I

- Bartik, A. W., Currie, J., Greenstone, M., and Knittel, C. R. (2019). The Local Economic and Welfare Consequences of Hydraulic Fracturing. *American Economic Journal: Applied Economics*, 11(4):105–155.
- Breidenbach, P. and Eilers, L. (2018). RWI-GEO-GRID: Socio-economic data on grid level. *Jahrbücher für Nationalökonomie und Statistik*, 238(6):609–616.
- Fowlie, M., Rubin, E., and Walker, R. (2019). Bringing Satellite-Based Air Quality Estimates Down to Earth. *AEA Papers and Proceedings*, 109:283–288.
- Gardner, J., Thakral, N., Tô, L. T., and Yap, L. (2024). Two-Stage Differences in Differences. *Working Paper*.
- Harris, I., Osborn, T. J., Jones, P., and Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. *Scientific Data*, 7(1):109.
- Krebs, O. and Pflüger, M. (2023). On the road (again): Commuting and local employment elasticities in Germany. *Regional Science and Urban Economics*, 99:103874.

References II

- Monte, F., Redding, S. J., and Rossi-Hansberg, E. (2018). Commuting, Migration, and Local Employment Elasticities. *American Economic Review*, 108(12):3855–3890.
- Quentel, M. (2023). Gone with the Wind: Renewable Energy Infrastructure, Welfare, and Redistribution. Working Paper. \backslash .
- Rud, J.-P., Simmons, M., Toews, G., and Aragon, F. (2024). Job displacement costs of phasing out coal. *Journal of Public Economics*, 236:105167.
- Schaffner, S. and Thiel, P. (2024). FDZ Data description: Real-Estate Data for Germany (RWI-GEO-RED v10) Advertisements on the Internet Platform ImmobilienScout24 2007-12/2023. Technical report, Essen.
- van Donkelaar, A., Hammer, M. S., Bindle, L., Brauer, M., Brook, J. R., Garay, M. J., Hsu, N. C., Kalashnikova, O. V., Kahn, R. A., Lee, C., Levy, R. C., Lyapustin, A., Sayer, A. M., and Martin, R. V. (2021). Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty. *Environmental Science & Technology*, 55(22):15287–15300.

Air Quality in Germany 2005 - 2021

Country Mean · · Unweighted - Population Weighted

Roadmap

Appendix

Descriptive Results

Pollution Exposure Across Income Deciles

$$PM_{2.5,nt} = \omega_{l \times t} + \sum_{k=2}^{10} \theta_k \mathbb{1}(D_{nt} = k) + C_{nt}\beta' + X_{nt}\delta' + \epsilon_{nt}$$

- *PM*_{2.5,*nt*} : Mean annual PM2.5 concentration in grid cell n in year t
- Dnt: Decile of mean annual disposable household income
- Cnt: Average Temperature & Precipitation
- X_{nt}: Share of foreign-born residents

(2)

Pollution Exposure across Income Deciles • Raw Distribution

Outcome: Mean Annual PM2.5 Exposure 0.0 Estimate and 95% Conf. Int. 10 2 4 6 8 Income Decile Cross Section -

Exposure across Income Deciles • Back

Outcome: Mean Annual PM2.5 Exposure 0.0 Estimate and 95% Conf. Int. 6-70 -0.6 -0.8 2 10 6 8 1 Income Decile Rural — Urban

Pollution Exposure Across Income Deciles • Unit FE • Urban v Rural • Within Unit Variation

Outcome: Mean Annual PM2.5 Exposure

Exposure across Income Deciles • Back

Outcome: Mean Annual PM2.5 Exposure

Location of Plant Closures in Germany

Effect of Plant Closures on PM2.5

Outcome: Mean Annual PM2.5 Concentration

Effect of Plant Closures on Housing Prices - Back

Effect of Plant Closures on Local Income (with Unemployment Controls) • Back

Aggregate A High Industry Employment Low Industry Employment

Within Municipality Variation - Berlin Pack

(b) Household Income Percentile

Share of Income Deciles Within Top Pollution Decile

Share of Income Deciles Within p45p55 of Pollution Distribution

Absolute Income Effects

	t - 5	t - 4	t - 3	t - 2	t	t + 1	t + 2	t + 3	t + 4
Industrial Employment Sha Coefficient (SE)	are <= 25% 0.0115* (0.0065)	-0.0032 (0.0176)	0.0447*** (0.0157)	-0.0097 (0.0252)	-0.1409*** (0.0482)	-0.0672 (0.0452)	-0.0663 (0.0652)	-0.1168 (0.0998)	-0.0731 (0.1539)
Industrial Employment Sha Coefficient (SE)	are > 25% 0.0049 (0.0071)	0.0107 (0.0367)	0.0577 (0.0563)	0.0304 (0.0287)	-0.0277 (0.0588)	-0.3811** (0.1650)	-0.3641** (0.1691)	-0.8009*** (0.2139)	-0.9308*** (0.2161)
Industr Empl <= 25% Industr Empl > 25%	Observations 187,882 34,801	Within R ² 0.00154 0.07952	Adjusted R ² 0.00150 0.07931	Baseline Income (Full) 27.57 28.13			Baseli	ine Income (Esti 27.42 27.48	mation)

Standard errors clustered by Municipality

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Total Income Losses

- Total population in neighborhoods with closures and industrial employment share $>25\%\approx1.4$ million adults
- Based on the 95% CI of the estimate in t+4, the total annual income loss amounts to € 0.9 1.7 billion (0.2 0.4% of federal public spending in Germany in 2023)
- Avoided mortality cost from local PM2.5 reductions € 1.2 3.2 billion (€110 280 million of which in high industry areas)

Industry Composition • Back

Sector	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Animal and vegetable products	53	47	36	37	27	25	32	31	30	29	26	27	26
Chemical industry	232	227	209	210	206	206	198	181	177	178	161	171	170
Energy sector	832	840	815	821	803	750	743	748	678	688	621	539	566
Intensive livestock production	516	558	569	652	678	651	632	641	614	619	587	615	580
Mineral industry	368	368	375	375	369	368	359	358	359	359	341	324	317
Other activities	78	76	75	73	71	72	54	61	55	57	56	49	49
Paper and wood production	116	128	124	133	123	114	114	120	107	99	84	83	88
Production and processing of metals	319	340	323	339	327	300	308	318	309	316	317	295	288
Waste and wastewater management	406	410	395	402	389	382	377	384	361	317	290	293	285
Sum	2920	2994	2920	3042	2993	2868	2817	2842	2690	2662	2483	2396	2369

Composition of CO2 Emissions • Back

Energiebedingte Treibhausgas-Emissionen

Millionen Tonnen Kohlendioxid-Äquivalente¹

in Kohlendioxid-Äquivalenten, berücksichtigt sind Kohlendioxid (CO.), Methan (CH.) und Lachgas (N.O) ² einschließlich Militär und Landwirtschaft (energiebedingt)

³ enthält nur Emissionen aus Industriefeuerungen, keine Prozessemissionen

4 durch Gewinnung, Umwandlung und Verteilung von Brennstoffen

Quelle: Umweltbundesamt. Nationale Trendtabellen für die deutsche Berichterstattung atmosphärischer ellen für die deutsche Berichterstattung attensop. Emissionen 1990-2021 (Treibhausgase), Stand 04/2023 20 / 30

Summary Statistics • Back

Variable	Mean	SD	P25	Median	P75				
	Full Sample								
PM2.5	12.29	2.316	10.61	12.16	13.97				
Income pa	25.63	4.923	22.49	25.34	28.45				
Unempl Rate	5.021	3.611	2.53	4.12	6.56				
Foreign Share	5.178	6.152	0.67	3.44	7.42				
Population	546.8	1188	52	145	478				
Housing Price (sqm)	1735	1417	996.8	1474	2124				
Ν	2083373								
		Estii	mation S	ample					
PM2.5	12.67	2.317	11.02	12.52	14.33				
Income pa	26.85	4.927	23.41	26.46	29.83				
Unempl Rate	5.614	3.876	2.79	4.75	7.58				
Foreign Share	7.265	7.345	1.88	5.36	10.34				
Population	1167	1952	93	335	1367				
Housing Price (sqm)	2019	1445	1205	1701	2427				
Ν			224152	2					

Effect of Plant Closures on Unemployment

Outcome: Unemployment Rate (in %)

Income Estimation Sample vs Full Sample

Pollution Estimation Sample vs Full Sample

Unemployment Estimation Sample vs Full Sample

Housing Prices Estimation Sample vs Full Sample • Back

Distribution of CO2 Emissions from IED Plants • Back

Distribution of CO2 Emissions from IED Plants • Back 20 count Log CO2 Emissions in 2021 (in t)

PM2.5 Concentration across Income Deciles • Back

Earnings Loss Coal Mines UK • Back

Source: Rud et al. (2024)