

# CfDs to support renewables: the devil is in the details

Lena Kitzing

26 June 2024







#### How to properly design CfD contracts?

- Context-specific functionality, based on a (goodenough) understanding of technology & market situation, and of design options and their implications
- Trade-offs are inevitable
- Tailor-made, but based on best-practice principles and harmonisation where possible
- How will their massive use impact the functioning of electricity markets?
  - Possible to design production-based CfDs that are nondistortive in the day-ahead markets – intraday issues exist (same as for almost all existing support schemes)
  - Need more analysis on exact effects
  - Production-independent ideas are compelling but face open implementation questions
  - Unresolved issues remain for all suggestions



ROBERT SCHUMAN CENTRE

## Contracts-for-Difference to support renewable energy technologies: Considerations for design and implementation

Lena Kitzing, Anne Held, Malte Gephart, Fabian Wagner, Vasilios Anatolitis, Corinna Klessmann





#### What are CfDs?

Financial hedge



Financial Derivative

**Fixed-for floating swap** 



Source: EU4Energy and Energy Community, March 2020, Electricity market functions – short overview and description Online capacity-building material Swap Buyer (fixed-rate-payer)



Swap Seller (floating-ratepayer)

>> not invented specifically for electricity
In fact, a trillion EUR business for interest rates and
currency exchange rates \*

\* Fixed-for-floating interest rate swaps in the EU traded at \$1.8 trillion in Jan 2022 alone <a href="https://www.isda.org/a/yQPgE/Interest-Rate-Derivatives-Trading-Activity-Reported-in-EU-UK-and-US-Markets-January-2022.pdf">https://www.isda.org/a/yQPgE/Interest-Rate-Derivatives-Trading-Activity-Reported-in-EU-UK-and-US-Markets-January-2022.pdf</a>



#### How do CfDs work in detail?





#### **Key impact areas of CfDs**

- Closing the profitability gap
- Capping of revenues and redistribution to end-consumers
- Enabling market integration and fostering a cost-efficient system
- Allocating risks
- Addressing 'missing' long-term markets



#### When to use CfDs?

#### WHEN

- (1) the market does not provide sufficient investment incentive
  - Sufficiently large and liquid long-term markets are missing
  - Not only when assets are unprofitable also when not bankable
- (2) Government wishes to directly collect revenues at high prices

#### FOR ASSETS that

- have high upfront investment cost
- benefit greatly from reduced exposure to volatile prices
- Need stabilisation of price (or revenue) to achieve:
  - bankability
  - low cost of capital for financing



#### **Dimensions of CfD design**

| DIMENSION               | Category                         | Discussed design options                                                                                                                                                         |  |  |  |
|-------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Reference volume        | Reference volume                 | <ul><li>Generation-based</li><li>Capacity-based</li><li>Generation-potential-based</li></ul>                                                                                     |  |  |  |
|                         | Reference market                 | <ul> <li>Day-ahead only</li> <li>Mixed price index (e.g. incl. intraday and balancing)</li> </ul>                                                                                |  |  |  |
| Reference price         | Reference period                 | <ul> <li>No aggregation (hourly / half hourly)</li> <li>Monthly</li> <li>Quarterly, Seasonal, Annual</li> </ul>                                                                  |  |  |  |
| design                  | Referencing<br>method            | <ul> <li>No averaging</li> <li>Technology-specific</li> <li>Technology-uniform RE</li> <li>Flat average (baseload price)</li> </ul>                                              |  |  |  |
|                         | Strike price design              | <ul> <li>Cap-and-floor system (rubberband, bufferzone)</li> <li>Indexation</li> <li>Add-ons / Deductions</li> </ul>                                                              |  |  |  |
| Further design elements | Market integration<br>safeguards | <ul> <li>Payout limitations at negative prices</li> <li>Clawback limitations at low prices</li> </ul>                                                                            |  |  |  |
|                         | Contract design                  | <ul> <li>Duration</li> <li>Administrative payment settlement rules</li> <li>Timing of referencing and payouts (ex-post, ex-ante)</li> <li>Exit option(s) for producer</li> </ul> |  |  |  |



#### **Dimensions of CfD design**

ROBERT SCHUMAN CENTRE

#### **Contract design**



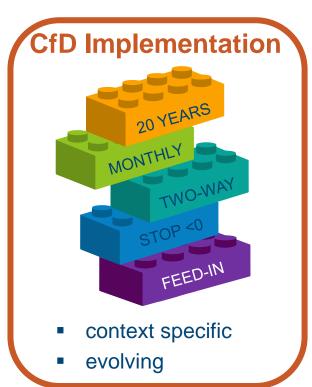
**Duration** 



**Payment settlements** 



**Exit option** 


#### Strike price design



Indexation



Add-ons / Deductions



#### **Market integration safeguards**



**Payout limits at negative prices** 

Dynamic clawback design

#### Reference price design



Reference market



Reference period



Referencing method



**Timing of referencing** 

#### **Reference Volume**



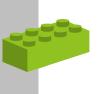
**Generation-based** 



**Capacity-based** 



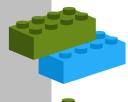
**Generation-potential-based** 



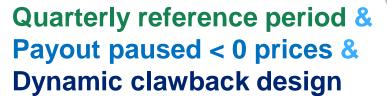



#### **Generation-based**




#### "produce-and-forget"




#### Hourly reference period



Hourly reference period & Payout paused < 0 prices



Quarterly reference period & Payout paused < 0 prices



Some market distortions remain

Table 1: CfD schemes implemented in European countries

| Country | Duration (Years) | Reference<br>period | Referencing<br>method | Other features                                                                      |  |
|---------|------------------|---------------------|-----------------------|-------------------------------------------------------------------------------------|--|
| DK      | 20               | Annual              | Uniform               | Limited clawback / net payment cap                                                  |  |
| FR      | 20               | Monthly             | Volume-weighted       | Premium for<br>curtailment during<br>negative prices                                |  |
| GR      | 20               | Monthly             | Technology-specific   | -                                                                                   |  |
| HU      | up to 25         | Monthly             | Technology-specific   |                                                                                     |  |
| IE      | 20               | Hourly              | n/a                   | Compensation for<br>unrealised available<br>energy                                  |  |
| IT      | up to 30         | Hourly              | n/a                   |                                                                                     |  |
| PL      | 15               | Daily               | Volume-weighted       |                                                                                     |  |
| PO      | 15               | Hourly              | n/a                   |                                                                                     |  |
| ES      | up to 20         | Hourly              | n/a                   | Adjustment factor for remuneration at market price / Electricity market is regarded |  |
| UK      | 15               | Hourly              | n/a                   | -                                                                                   |  |



#### **Generation-independent**



#### Hourly reference period



Producer's forecasted production



Mathematical model based on weather data



Sample of wind/PV plants



Aggregated wind/PV production in a region



Technology-neutral base profile

### New basis risk related to volume reference

### Practical implementation questions

Disruptive to existing support landscape



|                                                                                              | expos              | ssing risk<br>ure for RE<br>ducers                                               | Exposing RE producers to basis risk (reference deviation) Price Volume |                | Enabling market integration                                                                                                                                  | Challenges and remaining issues / Implementation issues                                                                                                              |  |
|----------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                              | Price              | Volume                                                                           |                                                                        |                |                                                                                                                                                              |                                                                                                                                                                      |  |
| CfD with hourly reference period                                                             | No<br>exposur<br>e | Normal<br>production<br>risk<br>exposure                                         | No<br>exposur<br>e                                                     | No<br>exposure | hardly incentivises market integration, intraday distortions                                                                                                 | Lacking variable short-term<br>price signals hinder market<br>integration                                                                                            |  |
| CfD with hourly<br>reference period,<br>payout paused<br>during negative<br>day-ahead prices |                    | *                                                                                |                                                                        |                |                                                                                                                                                              | Lacking variable short-term<br>price signals hinder market<br>integration                                                                                            |  |
| CfD with monthly,<br>quarterly or annual<br>reference period                                 |                    |                                                                                  | **                                                                     |                | Provides short-term/seasonal price signals, creates bidding and production distortions on day-ahead, intraday and balancing market                           | Design in times of clawback, remaining DA-ID distortions                                                                                                             |  |
| CfD with<br>monthly/quarterly/<br>annual ref. period<br>and dynamic<br>clawback design       |                    | *                                                                                | **                                                                     |                |                                                                                                                                                              | Determination and implementation of dynamic clawback design, remaining DA-ID distortions                                                                             |  |
| CfD with a cap-<br>and-floor system<br>(and market<br>integration<br>safeguards as<br>above) |                    | *                                                                                | ***                                                                    |                | Price signals depend on ref.<br>period similar to above, price<br>signals passed through within<br>corridor, ID and DA distortions<br>similar to CfDs above. | Determination of Cap /floor<br>parameters; Fewer issues<br>with "drying up" of forward<br>markets; Lower pay-back to<br>consumers than in other CfD<br>variants      |  |
| Capability-based<br>CfD                                                                      | ***                |                                                                                  | ***                                                                    |                |                                                                                                                                                              | Potential measurement and manipulation possibilities (or their prevention).                                                                                          |  |
| Financial CfD                                                                                |                    | No exposure<br>to negative<br>prices,<br>additionally<br>removes<br>weather risk |                                                                        | ****           | market integration ensured<br>No DA and ID distortions<br>In case of aggregated reference:<br>incentive to optimise plant<br>location                        | Complexity and implementation issues, dealing with "collateral", possibly implications of classification as financial derivative and consequences for small players. |  |
| Yardstick CfD                                                                                |                    | Potentially removes weather risk                                                 | ***                                                                    |                | Short-, medium-, and long-term<br>market integration is ensured<br>Locational distortions are<br>addressed                                                   | Design details not specified                                                                                                                                         |  |



#### Risk exposure is key to understanding CfD design

- Price risk
  - not directly related to the choice between generation-based or generationindependent
- Volume risk
  - risk of revenue losses from negative prices mainly in generation-based, due to dynamic designs
  - weather risk exposure addressed in generation-independent (should it?)
- Basis risk (= risk of deviating from the reference)
  - Mostly dependent on the choice of referencing method and period
  - volume basis risk introduced by generation-independent



#### **Open discussion on CfDs**

#### Benefits from the two-sided CfD:

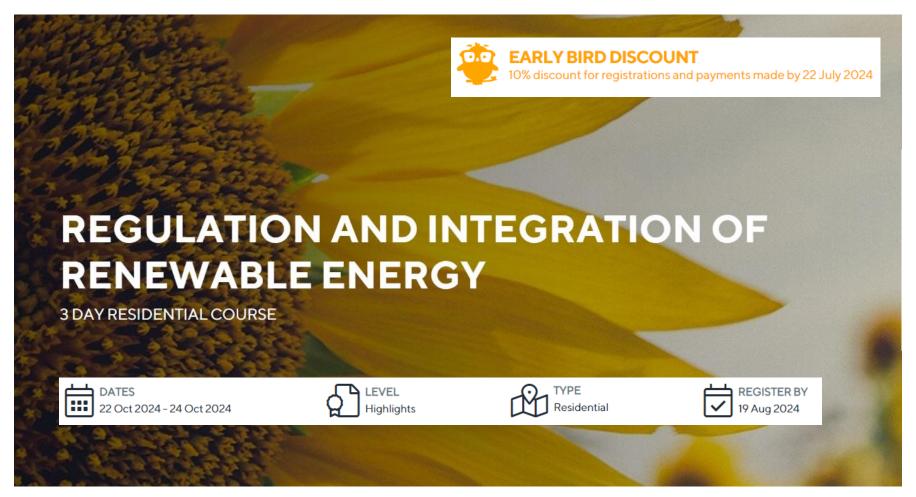
- More stable revenues for bankability
- Avoids strike price erosion, as seen under one-sided CfD (sliding premiums)
- Avoids emergency revenue-collection interventions by policy makers

#### Interaction between markets:

- Potential distortions regarding intraday, balancing market & forward markets
- Quantification of effects, more research needed
- Much can be handled through 'smarter' designs, schemes are continuously improved

#### • Interactions with PPA and forward markets:

- It is still a vastly growing segment / many countries do not yet provide access to adequate long-term hedging at all
- The volumes that can be offered by PPA market will likely not be sufficient for massive scale-up
- CfDs will influence the attractiveness and scope of PPA and forward markets, more research needed




#### **Conclusions**

- Contract-for-Difference are highly diverse in implementation
- Many design options available for the informed policy maker possible advantage to experiment and create positive learning feedback loops
- We can design & implement production-based CfDs that are non-distortive on the dayahead market & provide investment certainty
- We can conceptualise the design of functional generation-independent CfDs, but lack experience & compatibility
- Some unresolved issues remain with all suggestions
- > what really matters is to create adequate designs that ensure context-specific functionality & implementability



#### ...want to learn more? >> JOIN OUR COURSE!







**Course Director** 

Course Director

Lena Kitzing **⊙** 

Mario Ragwitz →

REGISTER HERE

https://fsr.eui.eu/course/regulation-and-integration-of-renewable-energy/https://apps.eui.eu/EventRegistration/?eventId=564883





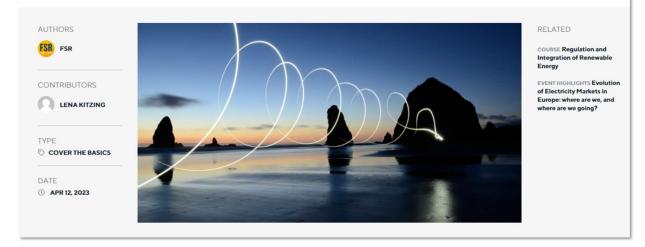
https://fsr.eui.eu/contracts-for-difference/

ROBERT SCHUMAN CENTRE

HOME ENERGY & CLIMATE

TRANSPORT WATER & WASTE

**■ MORE** Q SEARCH


(2)

A / Energy & Climate / Electricity / Contracts-for-Difference

#### **ELECTRICITY**

#### **Contracts-for-Difference**

What are Contracts-for-Difference (CfDs)? How are they designed? And how do they apply to the markets?



https://fsr.eui.eu/publications/?handle=1814/76700



ROBERT SCHUMAN CENTRE

## Contracts-for-Difference to support renewable energy technologies: Considerations for design and implementation

Lena Kitzing, Anne Held, Malte Gephart, Fabian Wagner, Vasilios Anatolitis, Corinna Kiessmann





|                                           |                                      |                  | Period 1 | Period 2 | Period 3 | Period 4 | Period 5 | TOTAL  |
|-------------------------------------------|--------------------------------------|------------------|----------|----------|----------|----------|----------|--------|
|                                           | Own production volu                  | ime [MWh]        | 50       | 90       | 25       | 80       | 110      |        |
|                                           | Production of technology group [GWh] |                  | 400      | 950      | 250      | 700      | 1250     |        |
|                                           | Strike price                         | [EUR/MWh]        | 120      | 120      | 120      | 120      | 120      |        |
|                                           | Market price                         | [EUR/MWh]        | 110      | 50       | 130      | 20       | 20       |        |
| Design 1:<br>no averaging                 | CfD                                  | payout [EUR/MWh] | 10       | 70       | -10      | 100      | 100      |        |
|                                           | Achieved price in period [EUR/MWh]   |                  | 120      | 120      | 120      | 120      | 120      |        |
|                                           |                                      | Revenues [EUR]   | 6,000    | 10,800   | 3,000    | 9,600    | 13,200   | 42,600 |
| Design 2:<br>volume weighted<br>averaging | CfD                                  | payout [EUR/MWh] | 74       | 74       | 74       | 74       | 74       |        |
|                                           | Achieved price in                    | period [EUR/MWh] | 184      | 124      | 204      | 94       | 94       |        |
|                                           |                                      | Revenues [EUR]   | 9,200    | 11,170   | 5,100    | 7,520    | 10,350   | 43,340 |
| Design 3:<br>flat averaging               | CfD                                  | payout [EUR/MWh] | 54       | 54       | 54       | 54       | 54       |        |
|                                           | Achieved price in                    | period [EUR/MWh] | 164      | 104      | 184      | 74       | 74       |        |
|                                           |                                      | Revenues [EUR]   | 8,200    | 9,360    | 4,600    | 5,920    | 8,140    | 36,220 |