# BETWEEN WAR AND EU ACCESSION

HOW UKRAINE CAN COMBINE ENERGY SECURITY AND GREEN RECOVERY



## ENERGY SITUATION AND CURRENT NEEDS



## **Damages for energy infrastructure**



43% of TSO's high-voltage network was damaged42 of 94 (45%) key high-voltage transformers were damaged or destroyed



% from capacity available before 02.2022

As of September 1, 2023, the damage to energy facilities amounted to **8.8 billion USD**; another **2.7 billion USD** was caused by the destruction of infrastructure, housing, and utilities.

Of the nearly **37 GW** of available capacity, more than **19 GW have been destroyed**, damaged or captured since February 2022.

#### **RESULTS OF MARCH 22 & 29 ATTACKS**

#### • Thermal generation

- Burshtynska, Ladyzhynska TPPs destroyed (DTEK)
- Prydniprovska and Dobrotvirska damaged (DTEK)
- Trypilska, Zmiivska TPP destroyed (Centrenergo)

#### • Hydro generation

- Dnipro HPP (ca. 1.6 GWt lost)
- Kanivska and Dnistrovska hydropower facilities attacked

#### • Gas

 on-ground infrastructure of gas storages attacked (incl. the largest one, Bilche-Volytsko-Ugerske facility)

- Municipal energy in Kharkiv and Odesa
  - Kharkiv: cogeneration facility and all main transformer substations were destroyed
- Ukraine Energy Support Fund
  - Funds are running out





- Renewables were curtailed entirely to ensure the power system was manageable and stable. Later, the TSO curtailed up to 50% of RES's potential daily production.
- TSO has limited the NPPs generation from 11,800 MW on Feb. 23 to 8,200 MW on Feb. 25 due to a decline of consumption by 30%-35%
- To ensure flexibility and resilience, the coal-fired and gas-fired TPPs were used for balancing. Additionally, HPPs were used for system balancing.



#### Winterization 2023/2024: national level









### IMMEDIATE NEEDS (BEFORE WINTER 2024/25)

- Quick to install flexible capacities
  - Gas turbine generators (with transformers and compressors)
  - Gas piston generators, turbogenerators
- In-kind contributions / Energy Support Fund



# DEFENCE EQUIPMENT

#### CHANGE OF APPROACH IS NEEDED

- Comprehensive support with projectbased financing
  - engineering costs
  - rebuild machine rooms
  - replacement of equipment (instead of repairs)
  - other needs to rebuild

- Backup equipment for replacement and components for operational repairs:
  - Power cables (from 0.4 kV to 110+ kV)
    - Needs not covered start from 100 km of cable
    - Most needs are for 6-35 kV grids (over 500 km of cable)
  - Power transformers
    - Most urgent: medium voltage grids of 6-40 kV (over 1,000 units)
  - Transformer oil (over 1,000 tons)
  - Items for the restoration of power grids
    - grid fittings, couplings, traverses, etc.
  - Stop-systems
    - repair of gas networks without interrupting supply to consumers



### **OTHER NEEDS**

- Vehicles to reach the damaged sections
  - over 2,000 units of pickups and light trucks requested, incl. about 130 critically needed;
- Electric tools
  - welding systems, drills, angle grinders, chainsaws, etc.
  - All possible items for the restoration of power grids: grid fittings, couplings, traverses, etc. (exact volumes are hard to estimate, as the recovery process is executed permanently).
  - Stop-systems that allow for the repair of gas networks without interrupting supply to consumers.



## NATIONAL ENERGY AND CLIMATE PLAN



### ROLE OF NECP IN UKRAINE'S INTEGRATION TO THE EU

- NECPs were introduced by the Regulation (EU) 2018/1999, agreed as part of the Clean Energy for all Europeans package adopted in 2019
- Ukraine's obligation under the Energy Community Treaty and the EU-Ukraine Association Agreement
- NECP is a conditionality for the implementation of the Ukraine Facility financial support program of the European Commission.
- □ NECP is a subject to review and recommendations from the Energy Community Secretariat
  - NECP's role:
    - Medium-term planning
    - Coordination of public policies
    - Identification of investment needs and gaps in existing policies
    - Strengthening of international cooperation



#### UA NECP SOME BASIC TARGETS

| Dimension                                |                                                                          |                                                                              |                                                                                  |                                                                                                     |
|------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Decarbonization                          | Reduction of GHG<br>emissions by 65%<br>compared to the level of<br>1990 | Reduction of methane<br>emissions by 30%<br>compared to the level of<br>2020 | 27% share of RES in gross final energy consumption                               | Share of alternative sources<br>(RES and secondary) in<br>heat production 30% (2025),<br>40% (2035) |
| Energy Efficiency                        | Primary energy<br>consumption <72.224<br>Mtoe (est.)                     | Final energy consumption <42.168 Mtoe (est.)                                 | Cumulative amount of end-<br>use energy savings over<br>2021-2030 at 16.405 Mtoe | Energy savings in public<br>buildings no less than 24.9<br>GWh/year                                 |
| Energy Security                          | Diversification - no more<br>than 30% from a single<br>supplier          | Reducing the share of a single supplier of nuclear fuel to 60%               | Increasing the flexibility of the national energy system                         | Reducing the level of import dependency in TPES to 33%                                              |
| Internal Energy Market                   | The level of<br>interconnectivity with<br>ENTSO-E at 10%                 | 25% RES in electricity generation                                            | Market pricing with the mechanisms of supporting vulnerable consumers            | Sufficient volumes of own gas<br>production<br>Promotion of biomethane                              |
| Research, Innovation and Competitiveness | Financing innovations and research in the sector of clean technologies   | Increase of<br>competitiveness<br>(resource-efficient tech.)                 | Implementation of clean<br>energy solutions and low-<br>carbon technologies      | Reduction of energy poverty<br>to the EU level (7.9%)                                               |

### MODELLING (PRELIMINARY RESULTS): INVESTMENT NEEDS



Note: Each bar shows a sum of investment for a five-year period. For example, investments in 2030 include 2028,2029,2030,2031,3032

- Total investment needs are high in both scenarios, but comparable
- In both scenarios, the largest needs are for renewal of vehicles fleet (without households). Investments in electricity and heat generation are also significant.
- Due to higher rates of building retrofitting, investment needs for cogeneration in the WAM scenario will be lower than in the WEM.



THANK YOU

FOR YOUR QUESTIONS

