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Abstract

The European Union Emissions Trading System (EU ETS) has become the corner-

stone of the European Union’s strategy to decarbonize the economy and mitigate cli-

mate change. Following these objectives, the aim of this paper is to assess the impact

of the price of carbon, which is linked to the European market of allowances, on car-

bon dioxide emissions. To do so, we propose an econometric model that extends the

Environmental Kuznets Curve (EKC) model in several directions. First, the price of

carbon, which is the policy variable, is introduced in the model in a nonparametric

fashion; Second, we propose to use an interactive fixed effects approach to control for

latent heterogeneities in both dimensions of panel data; Third, to allow for spatial de-

pendence, we introduced spatially correlated errors. The extended EKC model poses

various challenges for estimation. To cope with them, using a profile likelihood ap-

proach, we propose a Feasible Generalized Least Squares estimator of the parameters

of interest. Furthermore, the policy effects curve is also efficiently estimated. The

asymptotic properties of the estimators are shown and, based on these outcomes, we

empirically evaluate the policy effects. Our approach yields significantly different and

more meaningful results compared to those obtained using standard estimation tech-

niques.

Keywords: Common factor, Cross-sectional dependence, Semiparametric regres-

sion, Generalized least squares, Panel data, EU ETS.
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1 Introduction

During the last decades, the growing interest of citizens and governments in environmental

degradation has led the world’s major economies to take measures to mitigate the effects

of global warming and climate change through intergovernmental negotiations and binding

agreements such as the Kyoto Protocol or the Paris Agreement of 2015, among others.

The reduction of greenhouse gas emissions has become one of the priority objectives of

the countries that signed these agreements and the implementation of the European Union

Emissions Trading System (EU ETS) in 2005 has become the cornerstone of the European

Union’s strategy to decarbonize the economy and mitigate climate change (Borghesi et al.,

2020).

The literature investigating the effects of carbon pricing on economic and environmental

performances has been developed for decades, focusing mainly on green taxation (Andersen

and Ekins, 2009), with some recent developments (Metcalf and Stock, 2023). The other

pillar of carbon pricing, i.e. the EU ETS, has witnessed relevant work since its origin in

2005.

As far as the effects of EU ETS on economic or environmental indicators such as CO2, in-

novation, and GDP are concerned, three main research streams have been developed focusing

on different outcomes: (i) Innovation, generally exploiting firm-level data of innovation activ-

ities (see Calel and Dechezlepretre, 2016); (ii) Economic performances, such as productivity,

GDP, or investment (see Marin et al., 2018; Carratù et al., 2020; Koch and Themann, 2022

and Borghesi et al., 2020); and (iii) Environmental outcomes, generally using firms’ data and

focusing on carbon dioxide (CO2) emissions as the dependent variable for the impact ana-

lysis. Furthermore, a recent paper by Colmer et al. (2022) has pointed out the existence of

mitigation effects, and in Papież et al. (2022) decoupling of emissions from economic growth

have been observed.

Nevertheless, despite the interesting results obtained in the previous papers, most of

their conclusions have been undertaken at firm-level. Alternatively, there exist some papers

that take a country-based macroeconomic data perspective (see Känzig and Konradt, 2023).

Following this latter approach, in this paper we exploit a macroeconomic panel data set

based on EU27 countries plus the UK, Iceland and Norway and develop a new approach to

assess the impact of EU ETS on CO2 emissions. In order to do so, we propose a partially

linear Environmental Kuznets Curve (EKC) specification (see Millimet et al., 2003 and

Baltagi et al., 2019, among others) where the key policy variable, which is invariant across

units, is the price of carbon that is linked to the European market of allowances. Beyond the

conditioning variables that appear in a standard EKC specification, it might be the case that

some other unknown common factors could affect individual countries in a heterogeneous

manner (see Mazzanti and Musolesi, 2013 and Musolesi and Mazzanti, 2014). To account for
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this issue we introduce an interactive fixed effects specification. Finally, following Rupasingha

et al. (2004) we also account for spatial dependence.

It is important to note that, in principle, more flexible specifications, such as fully non-

parametric models (Millimet et al., 2003; Azomahou et al., 2006; Musolesi and Mazzanti,

2014), could be of interest. However, in the case of moderate sample sizes, as the present

one and quite often with macro data, this approach presents serious drawbacks. Indeed,

the proposed specification is a partially linear model, which has a long tradition in both

theoretical and applied econometrics (see Härdle et al., 2000 for a comprehensive review of

the literature). The rationale of this model is that it represents a compromise between fully

nonparametric models, which are limited in application because the rate of convergence is

inversely related to the number of regressors (the so-called curse of dimensionality problem),

and fully parametric models, which are often too much restrictive. The appeal of the semi-

parametric partially linear model is that the parameters that appear in the linear component

have a rate of convergence that exceeds that for fully nonparametric models while it also

allows flexibility for a subset of the explanatory variables.

To summarize, the aim of this paper is to evaluate the impact of EU ETS on CO2 emis-

sions. To do so, we propose to estimate a partially linear EKC specification with both

interactive fixed effects and spatially correlated errors. In order to do so, we use a macroe-

conomic EU panel data set. Since the seminal paper by Robinson (1988), several procedures

have been developed for the estimation and inference of partially linear models. In the pres-

ence of interactive fixed effects, root-NT consistency of the parameters of interest is obtained

in Huang et al. (2021). Unfortunately, neither spatial dependence nor common policy vari-

ables that do not vary across individuals are allowed. Nor do they propose an estimator for

the nonparametric component that is crucial in our case. As it is already well known, in this

context, ignoring spatial correlation can render inefficient estimators and biased inference

results. To cope with this problem, in this paper, we propose Feasible Generalized Least

Squares (FGLS)
√
NT -consistent estimators of the parameters of interest. Furthermore, the

nonparametric estimator of the policy effects is also efficiently estimated. The estimation

technique is based on a profile likelihood approach (see Fan and Huang, 2005).

The rest of the paper is organized as follows. Section 2 introduces the model and dis-

cusses the estimation methods. Asymptotic properties of the proposed estimators are then

established in Section 3, while Section 4 applies the proposed methodology to evaluate the

effect of the EU ETS on CO2 emissions. Finally, Section 5 concludes the paper. A Monte

Carlo simulation study is conducted in the Appendix to demonstrate the finite sample per-

formance of the proposed estimators. Furthermore, all mathematical proofs are relegated to

the appendix.
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2 Econometric model and estimation procedures

2.1 Model specification

Let us consider an EKC specification that has been widely employed in the econometric

literature (Wagner, 2015; Wagner et al., 2020; Mazzanti and Musolesi, 2013), i.e.

co2 = α + β1gdp+ β2gdp
2 + β3r&d+ error,

where co2 refers to the level of CO2 emissions per capita and gdp stands for GDP per capita.

Furthermore, we consider r&d as a proxy for the level of technology (see Costantini et al.,

2013 and Baltagi et al., 2019) and it is also expressed in per capita terms. All variables are

expressed in log terms.

Since the main aim of our work is to assess the impact of EU ETS on CO2 emissions,

following Costantini et al. (2013) and Cole et al. (2005) as a framework, we will introduce

in the above model the environmental policy variable and specifically consider the carbon

price, which arises from the market of allowances. This variable varies over time but not

over cross-sectional units, so it can be introduced into the model as a common stochastic

covariate, zt, taken also in log form. The aggregate effect of EU ETS carbon pricing on co2it

could be the result of economic mechanisms that involves composite and rather complex

negative and positive effects on emissions. Indeed, on one side, negative effects on emission

can be due to the EU ETS cap itself, the abatement-oriented induced innovation (Calel

and Dechezlepretre, 2016; Calel, 2020) effect of targeted high emissions industrial sectors,

the diffusion and adoption of those innovations throughout the economy by inter sector

links and value chains. On the other side, positive effects can be related to the scale effect

of production, which might also be more pronounced through the competitiveness effect

of process and product innovations that are generated by the policy. A positive effect on

emission can be also due to a carbon rebound effect that may happens if carbon policies

improve energy efficiency, which leads to an energy rebound effect and in turns it may produce

a carbon rebound effect (Bolat et al., 2023). Consequently, while the EKC formulation has

theoretical bases and is consistent with a huge amount of the literature, a high degree of

uncertainty surrounds the shape (and sign) of the policy effect and there are no ex-ante

theoretical or empirical reasons to impose a specific parametric relation between co2it and

the price of polluting. Furthermore, it can be also expected that both common price, zt,

and unobserved common factors, ft, may produce a heterogeneous effect across units due to

country-specific economic or technological features. To account for these issues, we consider
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the following model:

co2it = αi + β1gdpit + β2gdp
2
it + β3r&dit +mi (zt) + γ′

ift + ϵit, (2.1)

for i = 1, . . . , N and t = 1, . . . , T , where ft is a vector of unobserved common factors, γi

are the corresponding factor loadings, ϵit is the idiosyncratic error term, and mi(·) is an

unknown smooth function. A more flexible specification such as models with heterogeneous

slopes (Mazzanti and Musolesi, 2013) could be of interest. However, they have a theoretical

justification only for large T and often underperform with respect to homogeneous estimators

(Baltagi et al., 2004).

Just for notational convenience, let yit = co2it, x
′
it = (gdpit, gdp

2
it, r&dit)

′
and hence, for

i = 1, . . . , N, t = 1, . . . , T , the regression model (2.1) becomes

yit = α′
idt + x′

itβ +mi(zt) + γ′
ift + ϵit. (2.2)

For the sake of generality, through the paper we define dt = (d1t, d2t, . . . , dnt)
′ as a n× 1

vector of deterministic components (such as time and seasonal dummies), xit ∈ IRp is a vector

of individual-specific explanatory variables on the ith cross-sectional at time t and zt ∈ IRq

is a vector of observed continuous common stochastic covariates (policy effects), mi(·) is an
unknown smooth function to estimate, and β is the unknown slope parameter to estimate. ft

is a r× 1 vector of unobserved common factors that are allowed to simultaneously affect all

cross-section units, albeit with different degrees measured with the factor loadings, γi, and

ϵit is an idiosyncratic error. Furthermore, spatial dependence is introduced by assuming that

the ϵit’s are conditionally correlated and heteroscedastic and the unobserved factors, ft, are

allowed to be correlated with the observed data (xit, zt) through the following specification

xit = A′
idt + gi(zt) + Γ′

ift + vit, (2.3)

where Ai and Γi are p × N and p × r factor loadings matrices with fixed components,

respectively, vit is a p× 1 vector of individual-specific components of xit, and gi(zt) is a p× 1

vector of unknown smooth functions.

2.2 Efficient estimation

In order to obtain efficient estimators for β and mi(·) we propose a standard two-step pro-

cedure. At the first stage, we will construct consistent estimators of both β and mi(·) and,
based on them, we will compute an estimator for the variance-covariance matrix of the idio-

syncratic error term. In the second stage, we will apply a standard FGLS technique to

achieve asymptotic efficiency.
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For the first stage, we will adapt the proposal in Pesaran (2006) and approximate the

unobserved factors, ft, by a suitable proxy that does not depend on an initial estimate of

β and mi(·) 1. More precisely, let yAt and xAt be the cross-sectional mean of yit and xit,

respectively, this suggest ft can be approximated by some linear function of λt = (yAt, xAt, dt),

that is a ℓ×1 vector, where ℓ = (1+p+n), plus a term op(1). Hence, the following augmented

regression is considered

yit = β′xit +mi(zt) + δ′iλt + ϵit + op(1), i = 1, . . . , N, t = 1, . . . , T, (2.4)

where δi is a ℓ× 1 vector of factor loadings. To clarify the structure of the model, we rewrite

(2.4) into the following matrix form

Yi· = Xi·β +mi(Z) + Λδi + ϵi· + op(1), (2.5)

where Yi· ≡ (yi1, . . . , yiT )
′ and ϵi· ≡ (ϵi1, . . . ϵiT )

′ are T × 1 vectors, Xi· ≡ (xi1, . . . , xiT )
′ is a

T × p matrix, Λ ≡ (λ1, . . . , λT )
′ is a T × ℓ matrix, and mi(Z) = (mi(z1), . . . ,mi(zT ))

′ is a

T × 1 vector.

By following a profile likelihood approach as proposed in Fan and Huang (2005), and

assuming that Z ′
zKH1(z)Zz is invertible, it can be shown that, for i = 1, . . . , N ,

m̂i(z,H1) = ι′1(Z
′
zKH1(z)Zz)

−1Z ′
zKH1(z)[Yi· −Xi·β̂ − Λδ̂i], (2.6)

where ι1 is a (1+q)×1 vector having 1 in the first entry and all other entries being 0, Zz is a

T × (1+ q) matrix whose t-th element is such as Zzt = [1, (zt − z)′] for z being a fixed point,

and KH1(z) is a T ×T diagonal matrix such as KH1(z) = diag(KH1(z1−z), . . . , KH1(zT −z))

where H1 is a q×q symmetric and positive definite matrix and K(·) is a nonnegative product

kernel function such that, for each u, it holds thatKH1(u) = |H1|−1
∏q

l=1 k(H
−1
1 ul) where u =

(u1, . . . , uq)
′ and k(·) is a univariate kernel function. Furthermore, if we write (2.6) in matrix

notation then we can define a T ×T smoothing matrix, S, as m̂i(Z,H1) = S[Yi·−Xi·β̂−Λδ̂i].

Note that S depends only on the values of zt whose definition is apparent from (2.6).

In order to provide estimators for β and δi we introduce some additional notation. Let

Ŷ = (IT −S)Yi·, X̂i· = (IT −S)Xi·, and Λ̂ = (IT −S)Λ. Define the following matrices: MΛ̂ =

IT −Λ̂(Λ̂′Λ̂)−1Λ̂′ and MX̂i
= IT −X̂i·(X̂

′
i·X̂i·)

−1X̂ ′
i·, whereas VΛ̂ is the T ×(T −ℓ) orthonormal

eigenvector matrix of MΛ̂ which corresponds to the eigenvalues of one. Furthermore, MΛ̂

1It can be proved that ft can be well approximated by the cross-sectional averages of the observed
variables, yit and xit, assuming: (i) rank(Γ∗) = r ≤ (1 + p) for sufficiently large N , where Γ∗ = E(γi,Γi) =

(γ,Γ); (ii) N−1
∑N

i=1
vit

q.m.−−−−→ 0 and N−1
∑N

i=1
ϵit

q.m.−−−−→ 0 for each t under rather weak conditions; (iii)

N−1
∑N

i=1
gi(zt) and N−1

∑N
i=1

mi(zt) are twice continuously differentiable in the neighborhood of z ∈ Z,
where Z is the support of zt.
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and MX̂i
are idempotent matrices, which follows that VΛ̂V

′
Λ̂
= MΛ̂ and V ′

Λ̂
VΛ̂ = IT−ℓ, and

similar notation and properties for VX̂i
.

Then assuming that
∑N

i=1 X̂
′
i·MΛ̂X̂i· is invertible, and following again the procedure in

Fan and Huang (2005) we obtain

β̂ =

(
N∑

i=1

X̂ ′
i·MΛ̂X̂i·

)−1 N∑

i=1

X̂ ′
i·MΛ̂Ŷi·, (2.7)

δ̂i =
(
Λ̂′MX̂i

Λ̂
)−1

Λ̂⊤MX̂i
Ŷi·. (2.8)

Focusing now on the estimation of the mean of mi(·), we propose the following nonpara-

metric estimator

m̂(z;H1) = ι′1(Z
′
zKH1(z)Zz)

−1Z ′
zKH1(z)

[
Y A −XAβ̂ − Λδ̂

]
, (2.9)

where δ̂ = N−1
∑N

i=1 δ̂i, whereas XA = (x′
A1, . . . , x

′
AT )

′ is a T × p matrix and Y A =

(yA1, . . . , yAT )
′ is a T -dimensional vector.

In the next Section, we will show that (2.7)–(2.9) are consistent and asymptotically nor-

mal. However, since they completely ignore the information contained in the correlation

structure of the ϵit’s these estimators are inefficient. More precisely, we describe the correl-

ation structure through the following assumption

Assumption 2.1 For t = 1, . . . , T and i = 1, . . . , N , E(ϵit|zt = z) = 0. Furthermore,

for t = s, E (ϵ·tϵ
′
·t| zt) = ΩN (zt), a N × N matrix, and for t ̸= s, E (ϵ·tϵ

′
·s| zt, zs) = 0.

Let Ω(Z) = diagt=1,··· ,T {ΩN (zt)} and ΩN (zt) = {ωij (zt)}i,j=1,...,N . The functions ωij(z)

have uniformly bounded derivative of second order at z. Furthermore, the matrix Ω (Z), is

nonsingular. Finally, E(|ϵit|ς |zt = z) < ∞, where ς > 4.

Note that for the sake of generality, in the previous assumption ωij(z) is considered as an

unknown smooth function that needs to be estimated. Alternatively, it could be assumed

that ωij(z) belongs to a family of parametric functions (see Soberon et al., 2022).

Now, in the second stage, we develop a procedure that enables us to obtain efficient

estimators for β and m(·) by incorporating the information in Assumption 2.1. To obtain

the FGLS estimator of β, note that

Ŷi· = X̂i·β + Λ̂δi + ϵi· + op(1) +Op(tr{H2
1}). (2.10)

Premultiplying both sides of (2.10) by V ′
Λ̂
and stacking the resulting observations over
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NT , we obtain

Ŷ ∗ = X̂∗β + e∗, (2.11)

where Ŷ ∗ = (IN ⊗VΛ̂)
′Ŷ and e∗ = (IN ⊗VΛ̂)

′ (ϵ+ op(1) +Op(tr{H2
1})) are NT ×1 vectors, ⊗

is the Kronecker product, X̂∗ = (IN⊗VΛ̂)
′X̂ is a NT×p matrix, and ϵ is the NT×1 vector of

the idiosyncratic error term. Now, noting that Ωe∗ ≡ V ar(e∗|Z) = (IN ⊗V ′
Λ̂
)Ω (Z) (IN ⊗VΛ̂).

Hence, premultiplying (2.11) by Ω
−1/2
e∗ we get

Ω
−1/2
e∗ Ŷ ∗ = Ω

−1/2
e∗ X̂∗β + Ω

−1/2
e∗ e∗, (2.12)

and therefore the resulting Generalized Least Squares (GLS) estimator for β is

β̂GLS =
[
X̂ ′(IN ⊗MΛ̂)Ω

−1(Z)(IN ⊗MΛ̂)X̂
]−1

X̂ ′(IN ⊗MΛ̂)Ω
−1(Z)(IN ⊗MΛ̂)Ŷ . (2.13)

However, this GLS estimator is infeasible since it depends on Ω (Z) that is generally un-

known. To overcome it, we propose the following estimator for Ω̂ (Z) = diagt=1,··· ,T{Ω̂N(zt)}

Ω̂N(z) =

∑T
t=1 K

∗
H2
(zt − z)ê·tê·t

′

∑T
t=1 K

∗
H2
(zt − z)

, (2.14)

where K∗(·) is a nonnegative kernel function as the defined in (2.6), H2 is a q× q symmetric

and positive definite matrix, and ê·t = (ê1t, . . . , êNt)
′ is a N × 1 vector of residuals defined

as êit = yit − x′
itβ̂ − m̂i(zt;H1) − δ̂′iλt. Note that H2 satisfies different conditions from H1

and will thus be chosen differently. Therefore, replacing Ω (Z) by Ω̂(Z) in (2.13) we get the

Feasible Generalized Least Square Estimator,

β̂FGLS =
[
X̂ ′(IN ⊗MΛ̂)Ω̂

−1(Z)(IN ⊗MΛ̂)X̂
]−1

X̂ ′(IN ⊗MΛ̂)Ω̂
−1(Z)(IN ⊗MΛ̂)Ŷ . (2.15)

Focusing now on the nonparametric estimator for m(·), we rewrite the model to estimate

in matrix form obtaining

Y·t −X·tβ −∆λt = ıNm(zt) + U·t, (2.16)

where Y·t and U·t are N × 1 vectors, for uit = ϵit + [mi(zt) − m(zt)] + op(1), whereas X·t

and ∆ are N × p and N × ℓ matrices, respectively. Following Lee and Robinson (2015) and

Soberon et al. (2022), among others, and by imposing the identification condition ϖ′ıN = 1
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to identify m(·), we premultiply (2.16) by a given N × 1 weight vector ϖ obtaining

ϖ′(Y·t −X·tβ −∆λt) = m(zt) +ϖ′U·t. (2.17)

To estimate this regression model we choose ϖ to minimize V ar(ϖ′U·t|zt) = ϖ′ΦN(zt)ϖ,

where ΦN(zt) = E(u·tu
′
·t|zt) = {φij(zt)}i,j=1,··· ,N . Hence, we deduce the optimal ϖ = ϖ(z)

obtaining ϖ∗(z) = argminϖ V ar(ϖ′U·t|zt) = (ı′NΦ
−1
N (z)ıN)

−1Φ−1
N (z)ıN . Replacing this latter

result in (2.17) and following a similar procedure as in the previous section, the following

GLS weighted local-least squares estimator for m(·) is proposed,

m̂GLS(z;H1, ϖ) = ι′1(Z
′
zKH1(z)Zz)

−1Z ′
zKH1(z)Ỹ ϖ, (2.18)

where Ỹ is a T × N matrix whose it-th element is such as ỹit = yit − x′
itβ − λ′

tδi. Fi-

nally, using the definition of uit, and applying Assumption 2.1 we obtain φij(z) = ωij(z) −
[mi(z)− m̄(z)]2, for i, j = 1, · · · , N .

Again this estimator is infeasible since β, δi, and ϖ are unknown, but following a similar

procedure as in (2.14), with ûit = yit − x′
itβ̂ − δ̂′iλt − m̂(zt;H1) instead of êit, it is possible to

obtain a consistent estimator for ΦN(z), i.e., Φ̂N(z). Therefore, the resulting FGLS weighted

local-least squares estimator for m(·) is

m̂FGLS(z;H1, ϖ̂) = ι′1(Z
′
zKH1(z)Zz)

−1Z ′
zKH1(z)

̂̃
Y ϖ̂, (2.19)

where
̂̃
Y is a T ×N matrix whose it-th element is ̂̃yit = yit − x′

itβ̂ − λ′
tδ̂i and

ϖ̂ =
(
ı′N Φ̂

−1
N (z)ıN

)−1

Φ̂−1
N (z)ıN . (2.20)

3 Asymptotic properties

In this section, we aim to derive the asymptotic properties of the proposed estimators. Firstly,

we introduce some notations and assumptions that will be used throughout this article. Note

that these assumptions are mostly inspired by those of Pesaran and Tosetti (2011), but are

appropriately modified for the purposes of this paper. Later, we will present the main large

sample properties of the proposed estimators.

Denote X̃i· = Xi· − BX(z), Λ̃ = Λ − BΛ(z), F̃ = F − BF (z), D̃ = D − BD(z), and

X̃(ϖ) = X(ϖ) − BX(ϖ)(z), where BX(z) = E(Xi·|zt = z)ρzt(z), BΛ(z) = E(Λ|zt = z)ρzt(z),

BF (z) = E[F |zt = z]ρzt(z), BD(z) = E[D|zt = z]ρzt(z), and BX(ϖ)(z) = E[X(ϖ)|zt = z]ρzt(z)

for D ≡ (d1, . . . , dT )
′ being a T ×N matrix. We define MG̃ = IT − G̃(G̃′G̃)−1G̃′ as a T × T

projection matrix, where G̃ = (D̃, F̃ ) is a T × (N + r) matrix.
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Assumption 3.1 The (N + r + q) × 1 vector of common components (d′t, f
′
t , z

′
t)

′ is cov-

ariance stationary with absolute summable autocovariances, distributed independently of the

individual-specific errors, ϵit and vit, for all i and t.

Assumption 3.2 The individual-specific errors ϵit and vjt′ are distributed independently for

all i, j, t and t′, and for each i, vit follows a linear stationary process with absolute summable

autocovariances given by

vit =
∞∑

τ=0

Siτϑi,t−τ ,

where for each i, ϑit is a p×1 vector of serially uncorrelated random variables with mean zero,

Ip variance matrix, and finite fourth-order cumulants. For each i, the coefficient matrices

Siτ satisfy the condition vit =
∑∞

τ=0 SiτS
′
iτ = Σvi ≤ C < ∞, where Σvi is a p × p positive

definite matrix such that supi ∥Σvi∥2 and C is some positive constant.

Assumption 3.3 The unobserved factor loadings (γi,Γi) are bounded, i.e., ∥γi∥2 < C and

∥Γi∥2 < C, for all i.

Assumption 3.4 Let Γ∗ = E(γi,Γi) = (γ,Γ), Rank(Γ∗) = r ≤ (p+ 1).

Assumption 3.5 The p × p matrices (NT )−1
∑N

i=1 X̃
′
i·MΛ̂X̃i· and (NT )−1

∑N
i=1 X̃

′
i·MG̃X̃i·

exist and are non-singular. They also have finite second-order moments.

Assumption 3.6 The probability density function of zt, ρzt(·), is continuous and bounded

away from zero. Also, ρzt(·), mi(·), and m(·) have bounded derivatives of order two in a

neighborhood of z ∈ int(Z).

Assumption 3.7 All second-order derivatives of E(λt|zt), E(xAt|zt), and E(yAt|zt) are

bounded and uniformly continuous at z in the interior of Z.

Assumption 3.8 K(u) =
∏q

l=1 k(ul) is a product kernel, and the univariate kernel function

k(·) is compactly supported and bounded such that
∫
k(u)du = 1,

∫
uu′k(u)du = µ2(K)Iq,

and
∫
k2(u)du = R(K), where µ2(K) ̸= 0 and R(K) ̸= 0 are scalars and Iq is a q × q

identity matrix. All odd-order moments of k vanish, that is
∫
uı1
1 , . . . , u

ıq
q k(u)du = 0, for all

non-negative integers ı1, . . . , ıq such that their sum is odd.

Assumption 3.9 Let cH1 = tr{H2
1} + (logT/T |H1|)1/2. The bandwidth matrix H1 is sym-

metric and positive definite, where each element of H1 tends to zero. As (N, T )
j−→ ∞,√

Nc2H1
→ 0,

√
NTc2H1

→ 0, NT |H1| → ∞, and T |H1| → ∞.

10



Assumption 3.10 For some ς > 0, E[|ϵit|(2+ς)] exists and is bounded.

Assumptions 3.1-3.4 are rather common assumptions concerning the individual-specific

errors of xit, common factors and rank condition (see Pesaran, 2006 or Pesaran and Tosetti,

2011 for further details). Assumption 3.5 is required to identify β. In addition, Assump-

tions 3.6-3.7 are standard smoothness and boundedness conditions on the density function

and moment functionals. Assumptions 3.8-3.9 are kernel and bandwidth conditions quite

common in the local linear literature and Assumption 3.10 is required for the Lyapunov

condition. Note that the kernel function having a compact support in Assumption 3.8 is im-

posed for the sake of brevity and can be removed at the cost of lengthy proofs. Specifically,

the Gaussian kernel is allowed.

In the following theorems, we focus on establishing the asymptotic normality of the above

estimators under common weak dependence.

Theorem 3.1 Consider the panel data model (2.2) and (2.3), and suppose that Assumptions

2.1-3.9 hold. Then, β̂ and δ̂i are consistent estimators for β and δi, respectively. If it is

further assumed that
√
Tc2H1

→ 0 and
√
T/N → 0, as (N, T ) → ∞,

√
NT (β̂ − β)

d−−→ N
(
0, Q−1ΨQ−1

)
,

where X̃ is a NT × p matrix, Ψ = limN,T→∞(NT )−1E
[
X̃ ′ (IN ⊗MG̃

)′
Ω (Z)

(
IN ⊗MG̃

)
X̃
]

and Q = limN,T→∞(NT )−1
∑N

i=1 E
(
X̃ ′

i·MG̃X̃i·

)
. are p× p matrices.

In Theorem 3.1 is proved that the consistency problem related to the presence of unob-

served common factors has been solved whether the rank condition of Assumption 3.4 holds

and as N and T are sufficiently large. Nevertheless, the asymptotic variance depends on the

particular specification of Ω(Z). Therefore, an alternative estimator with better asymptotic

properties in terms of variance-reduction can be obtained by taking into account the inform-

ation of the correlation matrix Ω(Z). Note that similar conclusions can be obtained if the

rank condition is violated (see Pesaran and Tosetti, 2011). The proof of this theorem is done

in the Appendix.

Under the above assumptions, the following theorems give the asymptotic distribution of

the nonparametric estimators, m̂i(·;H1) and m̂(·;H1), proposed for mi(·) and m(·), respect-
ively.

Theorem 3.2 Consider the panel data model (2.2) and (2.3). Suppose that Assumptions

2.1-3.10 hold and that
√

T |H1|tr{H2
1} = O(1). Given the

√
NT -consistency of β̂ and

√
T -

consistency of δ̂i, as (N, T ) → ∞,

√
T |H1|

(
m̂i(z;H1)−mi(z)−

1

2
µq
2(K)tr{H2

1Hmi
(z)}

)
d−−→ N

(
0,

ωii(z)R
q(K)

ρzt(z)

)
,

11



where Hmi
(·) is the Hessian matrix of mi(·).

The proof of Theorem 3.2 follows directly the proof of Theorem 2.1 in Ruppert and

Wand (1994). In Theorem 3.2 it is shown that m̂i(·;H1) is consistent and asymptotically

normal distributed with a rate of convergence of
√

T |H1|, regardless of the rank condition

assumption holds. Nevertheless, m̂i(z;H1) completely ignores the information in the error

term so it is subject to heteroscedasticity problems.

Theorem 3.3 Consider the panel data model (2.2) and (2.3). Suppose that Assumptions

2.1-3.10 hold and that
√
T |H1|ν−1

N (z)tr{H2
1} = O(1). Given the

√
NT -consistency of β̂ and

δ̂, as (N, T ) → ∞,

√
T |H1|ν−1

N (z)

(
m̂(z,H1)−m(z)− 1

2
µq
2(K)tr{H2

1Hm(z)}
)

d−−→ N

(
0,

Rq(K)

ρzt(z)

)
,

where νN(z) = N−2ı′NE(ϵ·tϵ
′
·t)ıN is a scalar term and Hm(·) is the Hessian matrix of m(·).

In Theorem 3.3 is shown that m̂(·;H1) is a consistent estimator of m(·) as N and T are

sufficiently large, but the variance of this nonparametric estimator exhibits a new element,

i.e., νN(z), which reflects the strengthening of the spatial correlation and heteroscedasticity

and depends directly on the particular specification of Ω (Z). Then, efficiency gains from

pooling observations over the cross-section units as it is proposed in Pesaran (2006) are not

achieved and efficient estimators could be obtained by taking into account the information

in Ω (Z). Furthermore, unlike the parametric estimator, the rate of convergence of this

nonparametric estimator depends on the rate of increase of νN(z), if any. Therefore, under

weak spatial dependence, νN = O (N−1), the rate of convergence is of order (NT |H1|)−1/2,

whereas it is (T |H1|)−1/2 under strong spatial dependence, i.e. νN = O (1). Note that

the proof of this theorem is done following a similar proof scheme as the corresponding for

Theorem 2.2 in Soberon et al. (2022) in a different context, and it is therefore omitted.

In summary, it has been shown that, with the proposed estimation procedure, the bias

problem related to the unobserved common factors has been solved. Furthermore, efficient

estimators can be obtained by taking into account the spatial correlation and heteroscedasti-

city of the error term.

In order to obtain the asymptotic properties of the efficient estimators proposed in this

paper, the following additional conditions are required

Assumption 3.11 The p×p matrices (NT )−1E
(
X̃ ′(IN ⊗MΛ̂)

′Ω−1 (Z) (IN ⊗MΛ̂)X̃
)
and

(NT )−1E
(
X̃ ′(IN ⊗MG̃)

′Ω−1 (Z) (IN ⊗MG̃)X̃
)
exist and are non-singular. They also have

finite second-order moments.

12



Assumption 3.12 K∗(u) =
∏q

l=1 k
∗(ul) is a product kernel where the univariate kernel

function k∗(·) is even and uniformly bounded with bounded support. Moreover, k∗(·) is in-

tegrable on the bounded support.

Assumption 3.13 The bandwidth matrix H2 is symmetric and positive definite, where each

element of H tends to zero. As (N, T )
j−→ ∞, T |H2| → ∞, T |H1|2 = o(|H2|), and N3

T |H1| +
Ntr{H2

2}
tr{H2

1}
→ 0.

Assumption 3.14 The estimators ρ̂(z) and Ĥm(z), where Hm(·) = ∂m(·)/∂z∂z′,

ρz(z)− ρ̂(z) = Op(∥ΩN (z) ∥−1∥Ω̂N(z)− ΩN (z) ∥),
{Hm(z)}2 − {Ĥm(z)}2 = Op(∥ΩN (z) ∥−1∥Ω̂N(z)− ΩN (z) ∥),

where ρ̂(·) and Ĥm(·) are consistent estimators of ρ(·) and Hm(·), respectively.

Assumptions 2.1 and 3.12 together help to ensure that the bias of each element of the

estimators of Ω (z) are Op(tr{H2
2}). Assumption 3.13 shows the relationship between H1,

H2, N , and T . They are necessary to show the consistency of these efficient estimators.

Assumption 3.14 is required to establish the asymptotic theory of the efficient estimators

without involving too much technicality and simplify the proofs.

Assumption 3.15 Let Xϖ = (X1·, . . . , XN ·)ϖ be a T×d matrix, the matrices T−1Z ′
zKH1(z)X

ϖ

and T−1Z ′
zHH1(z)Λ exist.

Assumption 3.16 For some ς > 0, E[|uit|(2+ς)] exists and is bounded.

Assumption 3.17 As N → ∞, ∥Φ−1
N (z)∥+ Nı′NΦ−2

N (z)ıN

(ı′NΦ−1
N (z)ı)2

= Op(1).

Furthermore, to obtain an efficient estimator of the unknown function, Assumption 2.1

imposes the smoothness of the covariance function. Assumption 3.16 is necessary in order to

check the Lyapunov condition for the CLT. Finally, Assumption 3.17 was discussed in detail

in Robinson (2012) where it was found that a sufficient (but not necessary) condition for the

second term on the left-hand side to be bounded is that the largest eigenvalue of ΦN(z) is

bounded.

Theorem 3.4 Consider the panel data model (2.2) and (2.3), and suppose that Assumptions

2.1-3.4, 3.6-3.9, and 3.11 hold. The GLS estimators for β are consistent. If it is further

assumed that
√
T/N → 0 as (N, T ) → ∞,

√
NT

(
β̂GLS − β

)
d−−→ N

(
0, Q−1

ϖ

)
,

where Qϖ = lim
N,T→∞

1

NT
E
(
X̃ ′(IN ⊗MG̃)

′Ω−1 (Z) (IN ⊗MG̃)X̃
)
.
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Theorem 3.5 Consider the panel data model (2.2) and (2.3), and suppose that Assumptions

2.1-3.4, 3.6-3.9, 3.12-3.13, and 3.15-3.16 hold. If it is further assumed

√
T |H1|ν(ϖ)−1

N (z)tr{H2
1} =

O(1), as (N, T ) → ∞,

√
T |H1|ν(ϖ)−1

N (z)

(
m̂GLS(z,H1, ϖ)−m(z)− µq

2(K)

2
tr{H2

1Hm(z)}
)

d−−→ N

(
0,

Rq(K)

ρzt(z)

)
,

where ν
(ϖ)
N (z) = (ı′NΦ

−1
N (z)ıN)

−1.

In Theorem 3.4 is shown that the asymptotic variance of β̂GLS has a sandwich structure.

It can be observed also an efficiency gain in β̂GLS with respect to β̂. On its part, for N and

T sufficiently large, in Theorem 3.5 is proved that the distribution of m̂GLS(z,H1, ϖ) will

be asymptotically normal if N and T are of the same order of magnitude (i.e., if T/N → κ,

where κ is a positive finite constant) and the rate of convergence will depend on the rate

of increase, if any, of ν
(ϖ)
N (z). Further, the efficiency improvement of this new estimation

procedure is corroborated if ν
(ϖ)
N (z) < νN(z). See Robinson (2012) or Lee and Robinson

(2015) for further details.

To finish the asymptotic analysis of the proposed estimators is necessary to show that

both parametric and nonparametric FGLS estimators are asymptotically equivalent to their

GLS counterparts.

Theorem 3.6 Consider the panel data model (2.2) and (2.3), and suppose that Assumptions

2.1-3.4, 3.6-3.9, and 3.13 hold. If it is further assumed that T/N → 0 as (N, T ) → ∞,

β̂FGLS − β̂GLS = oP

(
1√
NT

)
.

Theorem 3.7 Consider the panel data model (2.2) and (2.3), and suppose that Assumptions

2.1-3.4, 3.6-3.9, and 3.12-3.17 hold. As (N, T ) → ∞,

m̂FGLS(z,H1, ϖ)− m̂(z,H1, ϖ) = op

(
{ν(ϖ)

N (z)}−1/2

√
T |H1|

+ tr{H2
1}
)
.

In Theorems 3.6-3.7 the asymptotically equivalence between the GLS and FGLS es-

timators is proved, so we can immediately arrive at the asymptotic results for β̂FGLS and

m̂FGLS(z,H1, ϖ) which has the same limiting distribution as β̂GLS and m̂GLS(z,H1, ϖ), re-

spectively. Finally note that a crucial condition to prove Theorem 3.7 is ı′NΦ
−1
N (z)ıN ≥

N/∥ΦN(z)∥, where ∥ΦN(z)∥ denotes the square root of the largest eigenvalue of ΦN(z)
′ΦN(z).

Therefore, we can conclude that if ∥ΦN(z)∥ remains bounded, the variance rate of m̂(z,H1, ϖ)

is (NT |H1|)−1.
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4 Climate policy analysis: assessing the effects of EU

ETS on CO2 emissions

4.1 Data and variables

Our data is derived from official sources and covers EU27 countries plus the UK, Iceland

and Norway over the period 2005-2019. GDP expressed in Purcharing Power Parity (PPP),

population, and R&D (GERD) are derived from EUROSTAT. The CO2 series is provided by

EUROSTAT as well. We opt for CO2 series accounted by EUROSTAT because it includes all

the emitting sectors and indirect CO2 emissions and is reported in thousands of tonnes. The

key policy variable zt, which is invariant across units, is the price of carbon, linked to the

European Market of Allowances (EUA), the emission trading system that started being oper-

ational in 2005. Data on EUA are obtained from different sources Jiménez-Rodŕıguez (2019),

International Carbon Action Partnership (https://icapcarbonaction.com/en/ets-prices), and

Sendeco (https://www.sendeco2.com/it/prezzi-co2). Data on ETS auctions are registered

daily. The annual carbon price used in our model is the average auction price in the primary

market of all the transaction registered in a given year.

Figure 1 depicts the evolution of carbon price over time. The EU ETS was launched in

2005, marking a significant milestone as the first large-scale market for carbon emissions in

the EU. In 2005, the price was about 18 ➾per tonne. Prior to its establishment, experiences

in the United States had focused on regulating regional pollutants like NOx and SOx. The

initial phase, a 3-year pilot program, aimed to create a functional market structure. During

this period, the system concentrated on CO2 emissions from power generators and energy-

intensive industries, with most allowances allocated to businesses without charge. This

phase, characterized as a period of ’learning by doing,’ laid the foundation for the subsequent

phases of the EU ETS. Phase 1 of the EU ETS successfully determined a price for carbon

emissions, albeit amidst considerable volatility, as noted by Ellerman and Joskow (2008).

High market expectations were associated with the 2009 United Nations Climate Change

Conference, commonly known as the Copenhagen Summit. However, the outcomes of the

conference did not convey the policy outcomes that were expected. These unsatisfactory

outcomes, combined with the global economic recession following the 2008 financial crisis,

led to a sharp decline in carbon prices. The economic stagnation that followed the 2009

recession peak is reflected in the decline of carbon prices, indicating a period of uncertain

climate policy commitments worldwide. However, between 2014 and 2016, promising signs

of economic recovery emerged. This progress was further reinforced by the pivotal 2015

Paris Agreement, outlining global commitments to reduce carbon emissions. This significant

policy development likely led to an increase in CO2 prices within the EU, as observed by
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Figure 1: The evolution of carbon price over time.

Borghesi et al. (2016) and Ellerman et al. (2016). The 2.6% GDP growth in 2017, resulting

from enhanced policy commitments following the Paris Agreement in 2015, may explain the

rise in prices observed from 2017 to 2019, when the price reached its maximum level of

24.2 ➾in 2019. It is also worth noting that descriptive statistics, available upon request,

indicate that despite a certain degree of cross-country heterogeneity, European greenhouse

gas emissions began decreasing significantly after 2007, coinciding with the recession. The

recession and the subsequent uncertain stagnation phase showed a further declining trend in

emissions. Lastly, a new significant decrease was observed over the last years in that dataset,

i.e., 2017-2019, after a short period during which emissions rebounded upward (2014-2016).

These descriptive figures also clearly highlight that common factors affecting emissions are

a relevant feature of the data and they should be accounted for in the econometric model.

4.2 Estimation results

Building upon the discussion established in Section 2.1, we estimate (2.1) using the estimators

proposed in Section 2. The results of the parametric component of the model are presented

in Table 1. To evaluate the potential misspecification related to the carbon price, various

specifications are considered (refer to columns (i)-(v)). In column (i), a fully parametric

model that does not contain the carbon price is considered. Subsequently, in column (ii),

a linear effect of the carbon price is introduced by including zt as an additional regressor.

In column (iii), the potential nonlinear effect of the carbon price is estimated within a fully

parametric setting, employing a second-order polynomial function. All these parametric

specifications are estimated using the CCEP estimator (Pesaran, 2006). Lastly, columns
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(iv)-(v) present the results from the proposed semiparametric estimators: the first-stage and

the second-stage estimator, respectively. The second-stage estimator accounts for spatial

error dependence of unknown form and heteroscedasticity, while the first-stage does not.

According to the estimation results, the parametric specifications yield negative estimates

for the coefficients associated with both gdpit and gdp2it, although these estimates are not

statistically significant. Considering that our sample covers EU countries in very recent

years, the finding of a negative elasticity concerning per capita GDP, which increases in

magnitude with the rise of this variable, aligns with the original idea behind the EKC. This

result is also consistent with respect to a substantial body of literature (Churchill et al.,

2018). However, the lack of significance in these coefficients is unexpected and diverges from

the existing literature. Note that gdpit is still not significant also when estimating a model

that does not contain gdp2it.

As far as the effect of the technology variable is concerned, it is found that the estimated

elasticity with respect to R&D expenditures is about -0.32. The literature, which is surveyed

in Koçak and Ulucak (2019), is heterogeneous in terms of the adopted proxy and results.

As for the proxy, while R&D expenditures is a common proxy for technology (Griliches,

1998) and is often employed (Fernandez et al., 2018), alternative proxies such as energy in-

tensity (Baltagi et al., 2019) and process or product innovation (Costantini et al., 2013) are

occasionally employed. While the conventional expectation is that technology would lead

to a reduction in emissions, the results are mixed and sometimes show positive estimates.

Notably, much of the existing literature has employed standard panel data specifications,

neglecting strong cross-sectional dependence. For that reason, we have also estimated the

models outlined in columns (i)-(iii) without the multifactor component, specifically, by con-

sidering a one-way fixed effects model. Interestingly, the estimated elasticity concerning

R&D expenditures decreases by approximately 40%, declining from -0.032 to around -0.02.

Even more striking is the pronounced change in elasticity regarding GDP (detailed results

available upon request). As Kapetanios et al. (2011) note within the common fully paramet-

ric framework, standard approaches that neglect common factors fail to identify β; instead,

they yield an estimate of β plus a term that is a function of the factor loadings γ′
i and Γ′

i.

Our results suggests that empirically, the bias arising from the omission of latent common

factors is sizeable (see also Mazzanti and Musolesi, 2013). Finally, as far as the EU ETS

policy variable is concerned, it is found that the associated coefficients of both the linear and

the quadratic specification are very close to zero and are not statistically significant.

In summary, the parametric specifications in columns (i)-(iii) yield unexpected results

that should be reassessed by employing the proposed semiparametric estimators. This be-

cause allowing for a nonparametric function mi(·) instead of imposing a parametric specific-

ation for the policy variable may be important to avoid a misspecification bias not only with
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Table 1: Fully parametric and semiparametric results.

Parametric Semiparametric
(i) (ii) (iii) (iv) (v)

gdpit −0.606 −0.607 −0.607 −3.560 −2.630∗∗∗

(−0.465) (−0.465) (−0.465) (−1.956) (−9.298)
gdp2it −0.113 −0.113 −0.113 −0.542∗ −0.412∗∗∗

(−0.638) (−0.638) (−0.637) (−2.227) (−10.372)
r&dit −0.320∗∗∗ −0.321∗∗∗ −0.321∗∗∗ −0.381∗∗∗ −0.316∗∗∗

(−3.831) (−3.826) (−3.822) (−4.216) (−9.302)
zt 0.000 −0.000

(0.021) (−0.007)
z2t 0.000

(0.012)

CD 3.14 3.11 3.11 3.91 1.05
[0.002] [0.002] [0.002] [0.000] [0.293]

CDw 2.41 2.41 2.41 2.12 0.79
[0.016] [0.016] [0.016] [0.034] [0.708]

â 0.802 0.802 0.802 0.728 0.528
â∗0.025 0.709 0.709 0.709 0.615 0.433
â∗0.975 0.896 0.895 0.895 0.841 0.624

Notes.
Columns (i)-(iii): CCEP (Pesaran, 2006).
Columns (iv) and (v): first-stage and second-stage semiparametric estimator.
**, **, *: Significance at 1%, 5%, 10%, respectively.
Standard errors within parentheses.
CD: CD test by Pesaran (2015, 2021).
CDw: averaged weighted CD test by Juodis and Reese (2022).
p-values within square brackets.
â: bias-corrected version of a given by equation (13) in Bailey et al. (2016).
∗95% level confidence bands.
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respect to the estimated policy effect but also with respect to the estimated parameters of

the standard ECK covariates. Furthermore, neglecting spatial error dependence may also

seriously affects the results.

As far as the proposed semiparametric estimators are concerned (columns (iv) and (v)),

the results highlight the empirical importance of incorporating a nonparametric function for

the EU ETS policy variable as well as addressing spatial error dependence. Firstly, the semi-

parametric first-stage estimator in column (iv) exhibits notable changes as the parameters

linked to gdpit and gdp2it experience a substantial increase in absolute value, though their

significance remains low. Additionally, it is observed a significant alteration in the estimated

relationship between co2it and zt, now being represented by a U-shaped function m̂(zt) (refer

to Figure 2).

Moving on to the semiparametric second-stage estimator in column (v), the results appear

more economically consistent. Both gdpit and gdp2it become highly significant, indicating

a statistically significant negative relation, which is consistent with the EKC framework.

These findings also highlight a substantial underestimation of the parameters associated

with gdpit and gdp2it in the parametric model. Notably, a comparison between the two

semiparametric estimators reveals significantly lower standard errors in the second-stage

estimator. Crucially, the second-stage estimator presents a nonparametric function of the

EU ETS policy effect that exhibits a negative shape for most of the domain, displaying in

that region an estimated elasticity ranging from approximately −0.06 to −0.08. However, a

threshold emerges for higher carbon price levels, where the estimated elasticity first becomes

zero and then increases to 0.02. Overall, this finding aligns with expectations and suggests

a credible result.

In our view, the reasons behind the observed positive effect that emerges for high levels

of carbon prices are twofold. First, the EU ETS price was very erratic over 2005-2019,

and in particular, the time periods associated with such high price levels are the initial

2005-2007 pilot phase and the latest years in the sample, 2018-2019. These two periods are

very different; the 2005-2007 pilot phase was highly experimental as the EU ETS system

was newly introduced. During this initial phase, when the European share of renewables

was limited, markets predominantly relied on solid fossil fuels such as coal, which increased

over 2005-2007. Second, the observed positive effect might be attributed to the composite

effects we have previously discussed. The future inclusion of the most recent 2019-2023 price

phase, where prices reached 100 ➾, could provide clearer evidence regarding this relationship.

Also note that the elasticity of R&D expenditures remains remarkably stable across all

specifications.

Finally, we also performed diagnostic checks on the residuals, specifically focusing on the

issue of cross-sectional dependence. The CD test developed by Pesaran (2021) is a widely
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adopted test, which is typically employed as a misspecification test in models that already

account for cross-sectional dependence (Bailey et al., 2016; Ertur and Musolesi, 2017; Juodis

and Reese, 2022). This test presents good small-sample properties and recent theoretical

works have also provided additional insights that are useful from an empirical perspective.

In particular, Pesaran (2015) demonstrated that the implicit null hypothesis of the CD test

is weak cross-sectional dependence in the most common cases. More precisely, let us define

ϵ as a measure of the degree to which T expands relative to N, as defined by T = O (N ϵ) for

0 < ϵ ≤ 1 and a being the exponent of cross-sectional dependence introduced in Bailey et al.

(2016), which can take any value in the range [0, 1] . The values of a in the range [0, 1/2)

correspond to different degrees of weak cross-sectional dependence, whereas values of a in

the range (1/2, 1] relate to different degrees of strong cross-sectional dependence. Pesaran

(2015) shows that the implicit null of the CD test is given by 0 ≤ a < (2− ϵ) /4. Thus, for

ϵ close to zero (T almost fixed as N → ∞), as it is roughly the case for the data used in

this paper, such a null hypothesis is 0 ≤ a < 1/2, whereas in the case in which ϵ = 1 (N

and T → ∞ at the same rate), the implicit null of the CD test is given by 0 ≤ a < 1/4.

Moreover, Juodis and Reese (2022) demonstrate that the CD test statistic is biased for any

fixed T and becomes divergent as T → ∞ when the CD test is applied to residuals obtained

from a regression model containing common time factors. To prevent erroneous rejection of

the null hypothesis, they propose a modified test statistic, denoted as CDw, which uses cross-

section covariances instead of correlations. Additionally, these covariances are weighted using

Rademacher distributed weights. To reduce the test’s reliance on a specific set of random

weights, they suggest averaging multiple CDw test statistics.

The CD statistics (in Table 1) were 3.14, 3.11, 3.11 and 3.91 for specifications (i), (ii),

(iii) and (iv), respectively. They are all highly statistically significant and strongly reject

the null hypothesis, suggesting that the exponent of cross-sectional dependence, a, is in the

range [1/2, 1] . Conversely, when considering the second-stage semiparametric estimator in

column (v), the CD statistic was equal to 1.05, so that the null was not rejected. We then

employ the average CDw test, which basically confirms the results that were obtained with

the standard CD test. The only subtle distinction lies in the slight decrease of the test

statistic when moving from the parametric specifications to the first-stage semiparametric

model. Finally, to quantify the extent of CSD, we compute the bias-corrected version of

a. As in Bailey et al. (2016), Holm’s approach has been preferred over the Bonferroni

procedure. These estimates, along with the 95% confidence bands, are also reported in Table

1. As for the fully parametric specifications, the exponent of cross-sectional dependence is

estimated to be approximately 0.8 with 95% confidence bands lying above 0.5 and not

including unity (0.71 and 0.9). It is worth to note that,similar to the findings in Ertur and

Musolesi (2017), residuals obtained from a multifactor error regression model exhibit a lower
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Figure 2: Estimated relation CO2 - EU ETS carbon price.

degree of CSD compared to the variables incorporated into the model. For these variables,

â was approximately 1. When finally moving to the two semiparametric estimations, it is

notable that â decreases substantially. It is estimated at 0.73 for the first-stage estimator

and further reduces to 0.53 for the second-stage estimator. Importantly, the 95% lower

confidence band for the second-stage estimator now falls below 0.5. As for the interpretation

of these results, it is worth emphasizing that according to Bailey et al. (2016) a is identifiable

only if a > 1/2 and that for values of 1/2 < a < 2/3, the identification of a is difficult, albeit

theoretically possible. In summary, despite the above discussed caveats related to the CD

test and the identification of a, these results clearly indicate that employing the second-stage

semiparametric estimator substantially reduces residual CSD.

5 Concluding remarks

In this paper, a new econometric model to assess the impact of the price of carbon, which is

linked to the European market of allowances, on carbon dioxide emissions is proposed. Our

proposal extends the EKC model in several directions. First, the price of carbon, which is in-

troduced into the model as the policy variable, is incorporated nonparametrically. Secondly,

we incorporate interactive fixed effects, and finally, we account for spatially correlated errors.

To efficiently estimate the parameters of interest we have used a profile likelihood approach.

The resulting Feasible Generalized Least Squares estimator of the parameters of interest has

been shown to be
√
NT -consistent, asymptotically normal, and efficient. Furthermore, the
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policy effects curve is also efficiently estimated nonparametrically. Based on these outcomes,

we have empirically evaluated the policy effects turning out that our results differ signific-

antly from standard estimation techniques giving more consistent results. Importantly, the

model proposed in this paper can be applied to many other empirical problems. Indeed,

in a number of circumstances such as wage, cost, or production functions, parametric spe-

cifications for the main explanatory variables, which vary both over time and across units,

are well established and build on economic theory. Conversely, a high degree of uncertainty

concerning the functional form generally surrounds the impact of common covariates like

energy shocks, global climatic conditions, or common policies on cross-sectional units such

as individuals, households, firms, industries, or countries.
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Appendix A. Monte Carlo experiments

In order to analyze the finite sample performance of the proposed estimators in this paper,

in the following we report the results of several simulation studies to compare the behavior

of the three proposed estimators for m(·), namely m̂(·;H1) (initial estimator), m̂GLS(·;H2)

(infeasible improved estimator), and m̂FGLS(·;H2) (feasible improved estimator). Taking as

benchmark Pesaran and Tosetti (2011), for all experiments we consider the following DGP

based on Eq. (2.2)-(2.3):

yit = αid1it + x′
itβ +mi(zt) + γ1if1t + γ2if2t + ϵit,

xlit = al1id1t + al2id2t + gli(zt) + γl1if1t + γl3if3t + vlit,

for i = 1, 2, . . . , N , t = 1, 2, . . . , T , l = 1, 2. In the above DGP, there are two individual-

specific regressors (xit = (x1it, x2it)
′), three observed common factors (zt, d1t, d2t), and three

unobserved common factors (f1t, f2t, f3t). For t = −49, . . . , 0, 1, . . . , T and ρ = (0, 0.2, 0.5, 0.8),

the observed common factors are generated as stationary AR(1) process:

d1t = 1, d2t = ρ2(t−1) + udt, udt ∼ IIDN(0, 1− ρ2), d2,−50 = 0,

zt = ρz(t−1) + ut, ut ∼ IIDN(0.5, 1/16), z−50 = 0,

whereas the unobserved common factors and individual-specific errors of xit are generated

as stationary AR(1) process for l = 1, 2, 3:

flt = ρfl(t−1) + ufl,t, ufl,t ∼ IIDN(0, 1− ρ2), fl,−50 = 0,

vlit = ρvlivli(t−1) + vlit, vilt ∼ IIDN(0, 1− ρ2vli
), ρvli ∼ IIDU(0.05, 0.95), vli,−50 = 0.

Furthermore, the factor loadings of the observed common effects are generated as follows:

αi ∼ IIDN(1, 1), (a11i, a21i, a12i, a22i) ∼ IIDN(0.5ı4, 0.5I4), where ı4 = (1, 1, 1, 1)′ and I4

is the 4 × 4 identity matrix, and not change across replications. Note that the first 50

observations of zt,v1it, v2it, f1t, f2t, and f3t are discarded.

The loading coefficients of unobserved common factors in the yit and xit are generated

as follows:

Γ′
i =

(
γ11i 0 γ13i

γ21i 0 γ23i

)
∼ IIDN

(
N(0.5, 0.5) 0 N(0, 0.5)

N(0, 0.5) 0 N(0.5, 0.5)

)
,

where γi1 ∼ IIDN(1, 0.2), γi2 ∼ IIDN(1, 0.2), so the rank condition is satisfied.

Furthermore, the heterogeneous unknown functions are generated such as mi(zt) =

(1/(1 + z2t )) + υi, g1i(zt) = (1 + z2t ) + υ1i, and g2i(zt) = sin(2zt) + υ2i, where (υi, υ1i, υ2i) ∼
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IIDN(0, 0.04) are fixed across simulations. The idiosyncratic errors ϵit of yit are generated

according to ϵit = bi(zt)ηt +
√
0.5ϵ0it, where bi(zt) = bizt, bi is generated as independent

N(0, 10) variates, kept fixed across replications, whereas (ηt, ϵ0it) are generated as independ-

ent Gaussian AR(1), with innovations having unit variance and using the ρ’s value as the

autoregressive coefficient.

In each DGP, we consider the (N, T ) pairs (N, T ) = (100, 50), (100, 75), (150, 100), and

(150, 125). Also, we use 1000 replications and the Epanechnikov kernel functions. Because

of the need for oversmoothing in the first stage, we set the first stage bandwidth H1 = h1Iq

to be 1.2 times the second stage one H2 = h2Iq, i.e., h1 = 1.2h2, and three bandwidth

values are used, i.e., h2 = 0.1, 0.3, 0.5. Note that even though (h1 = 1.2h2) does not imply

oversmoothing asymptotically, in finite sample applications it effectively oversmooths.

For evaluation of the performance of our estimators, we use the bias and the root mean

squared error (RMSE) for the slope parameters. In contrast, the squared root of the averaged

squared error (RASE) is computed for the regression functions. In what follows we focus on

the behavior of the estimators for β1 since the results for β2 are very similar and will not be

reported. In particular, results for the experiments are summarized in Tables 2-3.

In the results of Table 2 it can be seen that the performance of the parametric estimators

is very good. They display very small bias and their RMSEs decline steadily with increases

in N or T and decreases of ρ, but they are a bit sensitive to the bandwidth selection.

Furthermore, as was expected from the asymptotic properties, the estimator’s efficiency is

improved by taking the spatial dependence of the error term and heterogeneity into account

and β̂F presents the best results.

Analyzing the results for the nonparametric estimators summarized in Table 3 it can be

pointed out that the nonparametric procedure is robust to the bandwidth selection. Another

important finding is that an increase in either N or T results in a decrease in the SM and SE

of the RASE of the nonparametric function. Comparing the results from different strengths

of serial dependence, ρ, we can see that the SM and SE of the RASE decrease as ρ decreases.

Finally, when (N, T, ρ) are fixed, the GLS and FGLS nonparametric estimators that take

into account the information contained in the error term (i.e., the spatial dependence and

heterogeneity) give smaller RASEs than the initial estimator although the GLS estimator

performs the best.
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Table 2: Simulation results for the Bias (x100) and RMSE of the estimators for β1.

ρ h2 N=100,T=50 N=100,T=75 N=150,T=100 N=150,T=125
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

0 0.1 β̂ 0.041 0.189 0.759 0.180 -0.370 0.132 0.127 0.125

β̂G -0.007 0.014 -0.002 0.012 0.018 0.008 0.000 0.008

β̂F 0.044 0.182 0.747 0.177 -0.360 0.130 0.128 0.123

0.3 β̂ 0.515 0.206 1.125 0.182 -0.167 0.138 0.457 0.128

β̂G 0.009 0.014 -0.028 0.012 -0.013 0.008 0.031 0.007

β̂F 0.452 0.192 0.011 0.175 -0.164 0.132 0.430 0.124

0.5 β̂ 0.041 0.189 0.759 0.180 -0.370 0.132 0.127 0.125

β̂G -0.007 0.014 -0.002 0.012 0.018 0.008 0.000 0.008

β̂F 0.044 0.182 0.747 0.177 -0.360 0.130 0.127 0.123

0.2 0.1 β̂ 0.579 0.193 0.874 0.173 0.142 0.137 0.226 0.134

β̂G 0.008 0.016 0.046 0.012 -0.060 0.009 0.005 0.008

β̂F 0.537 0.185 0.859 0.171 0.135 0.135 0.223 0.132

0.3 β̂ 0.269 0.207 0.853 0.181 -0.095 0.141 0.181 0.135

β̂G -0.036 0.016 0.018 0.012 -0.055 0.008 -0.015 0.008

β̂F 0.178 0.193 0.829 0.174 -0.103 0.136 0.175 0.132

0.5 β̂ 0.196 0.201 1.021 0.170 -0.294 0.131 0.419 0.124

β̂G -0.035 0.015 0.029 0.012 -0.056 0.008 -0.014 0.008

β̂F 0.484 0.185 0.984 0.161 -0.290 0.124 0.408 0.118

0.5 0.1 β̂ 0.772 0.259 -0.231 0.220 0.605 0.166 0.426 0.165

β̂G -0.058 0.020 0.002 0.016 -0.004 0.010 0.000 0.010

β̂F 0.712 0.248 -0.214 0.215 0.589 0.163 0.415 0.163

0.3 β̂ 0.596 0.282 0.039 0.229 1.002 0.172 0.536 0.163

β̂G -0.103 0.019 -0.041 0.015 -0.011 0.011 0.024 0.010

β̂F 0.474 0.260 0.050 0.219 0.916 0.164 0.526 0.157

0.5 β̂ 0.320 0.274 0.006 0.222 0.917 0.164 0.711 0.153

β̂G -0.073 0.018 -0.042 0.015 -0.014 0.010 0.014 0.009

β̂F 0.206 0.247 0.015 0.209 0.803 0.153 0.684 0.145

0.8 0.1 β̂ -0.180 0.445 -2.273 0.402 0.411 0.326 -2.407 0.317

β̂G 0.073 0.027 -0.029 0.024 -0.026 0.016 -0.079 0.015

β̂F -0.183 0.407 -2.138 0.381 0.359 0.310 -2.286 0.304

0.3 β̂ 0.119 0.501 -2.675 0.437 0.494 0.343 -2.202 0.333

β̂G 0.051 0.029 -0.064 0.024 -0.028 0.016 -0.068 0.015

β̂F 0.042 0.423 -2.254 0.378 0.438 0.299 -0.019 0.291

0.5 β̂ 0.239 0.499 -2.596 0.440 0.623 0.339 -2.061 0.326

β̂G 0.038 0.028 -0.060 0.023 -0.020 0.016 -0.069 0.015

β̂F 0.217 0.404 -2.108 0.361 0.413 0.278 -1.540 0.271

Note: Bias = 1

1000

∑Q
ϕ=1

(β̂ϕ − β). RMSE =
√

1

1000

∑Q
ϕ=1

(β̂ϕ − β)2.
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Table 3: Simulation results for RASE of the nonparametric estimators.

ρ h2 N=100,T=50 N=100,T=75 N=150,T=100 N=150,T=125
SM SE SM SE SM SE SM SE

0 0.1 m̂ 0.769 0.313 0.762 0.260 0.728 0.210 0.737 0.197

m̂G 0.378 0.036 0.390 0.029 0.399 0.026 0.406 0.024

m̂F 0.749 0.307 0.745 0.256 0.716 0.213 0.725 0.203

0.3 m̂ 0.802 0.400 0.780 0.286 0.739 0.237 0.749 0.226

m̂G 0.399 0.039 0.413 0.033 0.420 0.029 0.427 0.027

m̂F 0.767 0.365 0.754 0.280 0.721 0.234 0.731 0.230

0.5 m̂ 0.769 0.313 0.762 0.260 0.728 0.210 0.737 0.197

m̂G 0.378 0.036 0.390 0.029 0.399 0.026 0.406 0.024

m̂F 0.749 0.307 0.745 0.256 0.716 0.213 0.725 0.203

0.2 0.1 m̂ 0.778 0.297 0.735 0.246 0.726 0.226 0.721 0.212

m̂G 0.383 0.037 0.392 0.029 0.402 0.026 0.409 0.025

m̂F 0.757 0.287 0.719 0.248 0.714 0.223 0.709 0.217

0.3 m̂ 0.798 0.347 0.756 0.273 0.727 0.244 0.724 0.225

m̂G 0.404 0.041 0.416 0.033 0.423 0.028 0.428 0.026

m̂F 0.765 0.316 0.727 0.269 0.709 0.241 0.708 0.227

0.5 m̂ 0.778 0.297 0.735 0.246 0.726 0.226 0.721 0.212

m̂G 0.383 0.037 0.392 0.029 0.402 0.026 0.409 0.025

m̂F 0.757 0.287 0.719 0.248 0.713 0.223 0.709 0.217

0.5 0.1 m̂ 0.832 0.453 0.803 0.342 0.746 0.298 0.753 0.298

m̂G 0.395 0.041 0.406 0.035 0.412 0.030 0.418 0.026

m̂F 0.791 0.423 0.771 0.328 0.719 0.298 0.728 0.290

0.3 m̂ 0.892 0.576 0.840 0.419 0.766 0.344 0.767 0.324

m̂G 0.414 0.043 0.426 0.037 0.433 0.031 0.436 0.028

m̂F 0.819 0.490 0.791 0.383 0.728 0.333 0.736 0.307

0.5 m̂ 0.889 0.600 0.835 0.441 0.735 0.321 0.760 0.317

m̂G 0.412 0.045 0.425 0.039 0.432 0.033 0.436 0.030

m̂F 0.811 0.496 0.784 0.391 0.717 0.308 0.730 0.295

0.8 0.1 m̂ 1.496 1.529 1.497 1.397 1.362 1.163 1.304 0.962

m̂G 0.418 0.061 0.425 0.051 0.432 0.042 0.434 0.038

m̂F 1.360 1.333 1.352 1.224 1.218 1.024 1.159 0.830

0.3 m̂ 1.762 1.999 1.710 1.728 1.582 1.616 1.480 1.219

m̂G 0.430 0.063 0.436 0.052 0.445 0.044 0.446 0.039

m̂F 1.570 1.709 1.515 1.492 1.389 1.329 1.311 1.116

0.5 m̂ 1.764 2.050 1.718 1.814 1.579 1.694 1.478 1.268

m̂G 0.426 0.064 0.434 0.052 0.442 0.045 0.445 0.040

m̂F 1.566 1.721 1.531 1.616 1.394 1.368 1.320 1.169

Note: SM and SE are the sample mean and standard error, respectively, of the RASE of the estimators

for the nonparametric function based on 1000 replications. RASE(m̂(z)) =
√

1

T
(m̂(zt)−m(zt))2.
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Appendix B. Mathematical proofs and Lemmas

Before proceeding to the analysis of the main asymptotic properties of the proposed estimat-

ors, we first prove several lemmas that are used later in the proofs of the theorems. Remember

that in the paper we denote X̃i· = Xi·−BX(z), Λ̃ = Λ−BΛ(z), D̃ = D−BD(z), G̃ = G−BG(z),

where BX(z) = E[Xi·|zt = z]ρzt(z), BΛ(z) = E[Λ|zt = z]ρzt(z), BD(z) = E[D|zt = z]ρzt(z),

BG(z) = E[G|zt = z]ρzt(z). Also, we define X̃
(ϖ̂) = X(ϖ̂)−BX(ϖ̂)(z), X̃(ϖ) = X(ϖ)−BX(ϖ)(z),

X̃(ω̂) = X(ω̂) − BX(ω̂)(z), X̃(ω) = X(ϖ) − BX(ω)(z), where BX(ϖ̂) = E[X(ϖ̂)|zt = z], BX(ϖ) =

E[X(ϖ)|zt = z], BX(ω̂) = E[X(ω̂)|zt = z], BX(ω) = E[X(ω)|zt = z]. Similar notation for Ỹ (ϖ̂),

Ỹ (ϖ), Ỹ (ω̂), Ỹ (ω). Also, cH1 = tr{H2
1}+ {logT/T |H1|}1/2.

Lemma 5.1 Let εAt be a composed error term defined as εAt = (ϵAt + v′Atβ, v
′
At)

′. Under

Assumptions 2.1 and 3.2, for each t, we have

a) E(εAt) = 0.

b) V ar(εAt) = O
(

1
N

)
, under weak dependence and V ar(εAt) = O (1) under strong de-

pendence.

Proof of Lemma 5.1: The proof of this lemma is straightforward from the proof of

Lemma A1 in Pesaran and Tosetti (2011). This lemma guarantees that for any value of

z, ϵAt
q.m.−−−→ 0 as N → ∞ and the degree of spatial dependence of ϵi· will be bounded by

νN(z) = N−2ı′NΩN (z) ıN , where ıN is a N × 1 vector of ones. Therefore, the results of this

paper are valid for both types of spatial dependence.

Lemma 5.2 Under Assumptions 3.1, 3.6-3.9, as T → ∞ we have

∑

∥z∥≤cH1

∣∣∣∣∣
1

T

T∑

t=1

[KH1(zt − z)xit − E{KH1(zt − z)xit}]
∣∣∣∣∣ = Op

(√
logT

T |H1|

)
.

Proof of Lemma 5.2: This lemma can be proved in a similar way as in Theorem 2 in

Hansen (2008) and it has been omitted for the sake of brevity.

Lemma 5.3 Under Assumptions 2.1-3.4,

a)
ε′A·

εA·

T
= O (N−1).

b) F̃ ′εA·

T
= O

(
(NT )−1/2

)
and D̃′εA·

T
= O

(
(NT )−1/2

)
.

27



c)
V ′

i·D̃

T
= O

(
T−1/2

)
and

V ′

i·F̃

T
= O

(
T−1/2

)
.

d)
V ′

i·εA·

T
= O (N−1) +O

(
(NT )−1/2

)
and

ϵ′i·εA·

T
= O (N−1) +O

(
(NT )−1/2

)
.

Proof of Lemma 5.3: This lemma can be proved in a similar way as in Lemma 2 in

Pesaran (2006) and it has been omitted for the sake of brevity.

Lemma 5.4 Let cH1 = tr{H2
1} + {logT/T |H1|}1/2. Under Assumptions 2.1, 3.2, and 3.6-

3.9, as T → ∞, we have

a)
X̂′

i·MΛ̂
X̂i·

T
=

X̃′

i·MG̃
X̃i·

T
+Op

(
1
N

)
+Op

(
1√
NT

)
+Op(cH1) uniformly over i,

b)
X̂′

i·MΛ̂
(IT−S)mi(Z)

T
= Op(c

2
H1
) uniformly over i,

c)
X̂′

i·MΛ̂
êi·

T
=

X̃′

i·MG̃
ϵi·

T
+Op

(
1
N

)
+Op

(
1√
NT

)
+Op(cH1) uniformly over i,

d)
X̂′

i·MΛ̂
F̂

T
= Op

(
1
N

)
+Op

(
1√
NT

)
+Op(cH1) uniformly over i,

where MG̃ = IT − G̃(G̃′G̃)−1G̃′.

Proof of Lemma 5.4: This lemma can be proved following similar reasoning as the

proof of (A.12)–(A.14) in Pesaran and Tosetti (2011) and Lemma 3 in Cai et al. (2019) and

it has been omitted for brevity.

Lemma 5.5 Under Assumptions 3.1, 3.6, and 3.8-3.9, as T → ∞, we have

a) (NT )−1X̂ ′(IN ⊗MΛ̂)Ω
−1(Z)(IN ⊗MΛ̂)X̂ = (NT )−1X̃ ′(IN ⊗MΛ̃)Ω

−1(Z)(IN ⊗MΛ̃)X̃+

op(1),

b) (NT )−1X̂ ′(IN⊗MΛ̂)Ω
−1(Z)(IN⊗MΛ̂) = (NT )−1X̃ ′(IN⊗MΛ̃)Ω

−1(Z)(IN⊗MΛ̃)+op(1).

Proof of Lemma 5.5: This lemma can be proved in a similar way as in Lemma 5.3 and

it has been omitted for brevity.
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Lemma 5.6 Under Assumptions 2.1-3.9 and 3.12-3.13 and at z such that ρz(z) > 0, as

T → ∞,

max
1≤i,j≤N

|ω̂ij(z)− ωij(z)| = Op(RTH), and ∥Ω̂N(z)− ΩN(z)∥ = Op(NRTH),

where RTH = Op (tr{H2
2}+ (T |H1|)−1).

Proof of Lemma 5.6: Denote by ω̂ij(z) and ωij(z) the (ij)-th element of Ω̂N(z) and

ΩN (z), respectively, we can write

ω̂ij(z)− ωij(z) =

∑T
t=1 K

∗
H2
(zt − z)[êitêjt − ωij(z)]∑T
t=1 K

∗
H2
(zt − z)

= R
(1)
ij +R

(2)
ij , (I.1)

where

R
(1)
ij =

∑T
t=1 K

∗
H2
(zt − z)[ϵitϵjt − ωij(z)]∑T
t=1 K

∗
H2
(zt − z)

, R
(2)
ij =

∑T
t=1 K

∗
H2
(zt − z)[êitêjt − ϵitϵjt]∑T
t=1 K

∗
H2
(zt − z)

.

Hence, R
(1)
ij is the estimation error of the usual Nadaraya-Watson estimator of the con-

ditional expectation of E(ϵitϵjt|zt = z) and, under the assumptions given in the paper, it is

straightforward to show that

|R(1)
ij | = Op

(
tr{H2

2}+ (T |H2|)−1/2
)
. (I.2)

If we consider the bound of R
(2)
ij , we denote g̃1it = X ′

it(β̂ − β), g̃2it = (δi − δ̂i)
′λt, and

ξ̃it = [mi(zt)− m̂i(zt;H1)]. Hence, êit can be expressed as êit = ϵit + g̃1it + g̃2it + ξ̃it + op(1),

where op(1) captures possible approximation error for replacing ft by the proxy’s vector λt.

Replacing this decomposition in R
(2)
ij we are going to prove

R
(2)
ij = T−1

T∑

t=1

K∗
H2
(zt − z)(II1 + II2 + op(1))/ρ̂(z)

= Op

(
tr{H4

1}+ (T |H1|)−1 + (T 2|H1||H2|)−1/2
)
, (I.3)

where ρ̂(z) is a nonparametric kernel estimator of ρzt(z) such as ρ̂(z) = T−1
∑T

t=1 K
∗
H2
(zt −

z), II1 = ϵitg̃1jt + ϵitg̃2jt + g̃1itϵjt + g̃1itg̃1jt + g̃1itg̃2jt + g̃2itϵjt + g̃2itg̃2jt + g̃2itg̃1jt, and II2 =

ϵitξ̃jt + g̃1itξ̃jt + g̃2itξ̃jt + ξ̃itϵjt + ξ̃itg̃1jt + ξ̃itg̃2jt + ξ̃itξ̃jt. Under the assumptions stated in

this paper, it can be proved that ρ̂(z) is consistent following Lee and Robinson (2015),

so 1
ρ̂(z)

= 1
ρzt (z)+op(1)

= Op(1). Therefore, in order to prove (I.3) we only need to analyze

T−1
∑T

t=1 K
∗
H2
(zt − z)(II1 + II2).
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Following a similar proof scheme as in Lemma 5.2 and given the
√
NT -consistency of β̂

and the
√
T -consistency of δ̂i, it is easy to show

T−1

T∑

t=1

K∗
H2
(zt − z)II1 = op

(
(NT )−1/2

)
+ op

(
T−1/2

)
. (I.4)

Considering the bound of the second term of R
(2)
ij , there are two leading terms that

have to be analyzed separately since the other elements are asymptotically negligible using

the consistency results of β̂ and δ̂i. For the first one, we obtain the following result using

Theorems 6 and 10 in Hansen (2008) and Assumption 3.13,

1

T

T∑

t=1

K∗
H2

(zt − z)ξ̃2it

≤ sup
|z|≤cT

∣∣∣∣∣T
−1

T∑

t=1

K∗
H2

(zt − z)− ρzt(z)

∣∣∣∣∣ sup
|z|≤cT

|m̂i(z;H1)−mi(z)|2 + |ρzt(z)| sup
|z|≤cT

|m̂i(z;H1)−mi(z)|2

= Op

(√
lnT

T |H2|
+ tr{H2

2}
)
Op


δ−2

T

[√
lnT

T |H1|
+ tr{H2

1}
]2
+Op


δ−2

T

[√
lnT

T |H1|
+ tr{H2

1}
]2


= Op

(
1

T |H1|
+ tr{H4

1}
)
, (I.5)

where δT = inf |z|≤cT ρzt(z) > 0 and cT = ((lnT )1/qT 1/2ς), for some ς > 0.

Similarly, for the second leading term we have E[T−1
∑

t KH(zt − z)ϵitξ̃it] = 0 and

V ar[T−1
∑

t KH(zt − z)ϵitξ̃it] = op

(
δ−4
T

T |H2|

(√
lnT

T |H1| + tr{H2
1}
))

. Hence, the proof is done

by replacing these results and (I.4)-(I.5) in (I.3). Replacing (I.2)-(I.3) in (I.1),

max
1≤i,j≤N

|ω̂ij(z)− ωij(z)| = Op(RTH). (I.6)

Finally, using (I.6) it is straightforward to show

∥Ω̂N(z)− ΩN(z)∥ ≤
{

N∑

i=1

N∑

j=1

(ω̂ij(z)− ωij(z))

}1/2

= Op(NRTH)

as N/T → κ, where κ is a positive constant. Hence, the proof of the lemma is done.
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Lemma 5.7 Under Assumptions 3.6, 3.8, and 3.9 at z such that ρz(z) > 0, as T → ∞,

T−1Z ′
zKH1(z)Zz =

(
ρzt(z) µq

2(K)H2
1Dρ(z)

µq
2(K)H2

1Dρ(z) H2
1µ

q
2(K)ρzt(z)

)
{1 +Op(cH1)}.

Proof of Lemma 5.7: The proof of this Lemma follows directly the proof of Theorem

2.1 in Ruppert and Wand (1994) and it has been omitted for brevity.

Lemma 5.8 Under Assumptions 2.1-3.9 and 3.12-3.13 and at z such that ρz(z) > 0, as

T → ∞,

∥ϖ̂ −ϖ∥ = Op(NRTH),

where RTH = Op (tr{H2
2}+ (T |H1|)−1).

Proof of Lemma 5.8: In order to prove this lemma, ∥ϖ̂ −ϖ∥ can be rewritten as

∥ϖ̂ −ϖ∥ ≤
∥∥∥(ı′N Φ̂N(z)

−1ıN)
−1Φ̂N(z)

−1ıN − (ı′NΦN(z)
−1ıN)

−1ΦN(z)
−1ıN

∥∥∥

=
∥∥∥ı′N Φ̂N(z)

−1
∥∥∥
∣∣∣(ı′N Φ̂N(z)

−1ıN)
−1 − (ı′NΦN(z)

−1ıN)
−1
∣∣∣

+
∥∥(ı′NΦN(z)

−1ıN)
−1
∥∥
∥∥∥ı′N

(
Φ̂N(z)

−1 − ΦN(z)
−1
)∥∥∥ . (I.7)

Analyzing each of the above terms separately it is straightforward to show that, using

the properties of ΦN(z), we get ∥ı′N Φ̂−1
N (z)∥ = Op(

√
N∥Φ−1

N (z)∥) = Op(
√
N). Furthermore,

using Assumption 3.17 we can prove

∣∣∣∣
(
ı′N Φ̂N(z)ıN

)−1

−
(
ı′NΦ

−1
N (z)ıN

)−1

∣∣∣∣ ≤

∣∣∣∣∣∣

ı′N Φ̂
−1
N (z)

(
Φ̂−1

N (z)− Φ−1
N (z)

)
Φ−1

N (z)ıN
(
ı′N Φ̂

−1
N (z)ıN

) (
ı′NΦ

−1
N (z)ıN

)

∣∣∣∣∣∣

≤ Op

(
ı′NΦ

−2
N (z)ıN(

ı′NΦ
−1
N (z)ıN

)2
∥∥∥Φ̂N(z)− ΦN(z)

∥∥∥
)

= Op

(∥Φ−1
N (z)∥
N

∥∥∥Φ̂N(z)− ΦN(z)
∥∥∥
)

= Op




∥∥∥Φ̂N(z)− ΦN(z)
∥∥∥

N


 .

Therefore, using the above results it can be proved that the first element of ∥ϖ̂ −ϖ∥ is
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bounded by

∥∥∥ı′N Φ̂−1
N (z)

∥∥∥
∣∣∣∣
(
ı′N Φ̂

−1
N (z)ıN

)−1

−
(
ı′NΦ

−1
N (z)ıN

)−1

∣∣∣∣ = Op

(
∥Φ̂N(z)− ΦN(z)∥√

N

)
. (I.8)

On its part, considering the behavior of ∥ı′N(Φ̂−1
N (z)− Φ−1

N (z))∥ it can be shown

∥ı′N(Φ̂−1
N (z)− Φ−1

N (z))∥ = ∥ı′N Φ̂−1
N (z)

(
Φ̂N(z)− ΦN(z)

)
Φ−1

N (z)∥

≤ ∥ı′NΦ−1
N (z)∥∥Φ̂N(z)− ΦN(z)∥∥Φ̂−1

N (z)∥
= Op

((
ı′NΦ

−2
N (z)ıN

)1/2 ∥Φ̂N(z)− ΦN(z)∥
)
.

and using the above results it can be shown that the second term of (I.7) is bounded by

∥∥(ı′NΦN(z)
−1ıN)

−1
∥∥
∥∥∥ı′N

(
Φ̂N(z)

−1 − ΦN(z)
−1
)∥∥∥

=
∥∥∥
(
ı′NΦ

−1
N (z)ıN

)−1
∥∥∥Op

(
(ı′NΦ

−2
N (z)ıN)

1/2∥Φ̂N(z)− ΦN(z)∥
)

= Op

(
(ı′NΦ

−1
N (z)ıN)

−1/2∥Φ̂N(z)− ΦN(z)∥
)

= Op((ı
′
NΦ

−1
N (z)ıN)

−1/2NRTH), (I.9)

given that (ı′NΦ
−1
N (z)ıN)

1/2 = O(1) and following a similar proof scheme as in Lemma 5.6 it

is straightforward to show that ∥Φ̂N(z)− ΦN(z)∥ = Op(NRTH). Hence, plugging (I.8)-(I.9)

in (I.7) the proof of the lemma is done.

Proof of Theorem 3.1: Plugging (2.5) into (2.7) and rearranging terms we get

β̂ − β =

(
N∑

i=1

X̂ ′
i·MΛ̂X̂i·

)−1 N∑

i=1

X̂ ′
i·MΛ̂(IT − S)[Fγi +mi(Z) + ϵi· +Op(tr{H2}) + op(1)] (I.10)

given that MΛ̂(IT −S)D = 0 since D ∈ Λ. Note that in (I.10) it can be seen that β̂ exhibits

a direct dependence of the unobserved common factors (i.e., zt and ft).

Using Lemma 5.4 in (I.10), assuming that the rank condition holds and by the uniform

boundedness assumption on γi, the expression to study is such as

√
NT (β̂ − β) =

(
1

NT

N∑

i=1

X̃ ′
i·MG̃X̃i·

)−1

1√
NT

N∑

i=1

X̃ ′
i·MG̃ϵi· +Op

(√
T

N

)
+Op

(
1√
N

)

+ Op

(√
Tc2H1

)
. (I.11)
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Under Assumption 3.5 we can prove
(
(NT )−1

∑N
i=1 X̃

′
i·MG̃X̃i·

)−1

→p Q−1, where we

define Q = limN,T→∞(NT )−1
∑N

i=1 E
(
X̃ ′

i·MG̃X̃i·

)
and (NT )−1

∑N
i=1 X̃

′
i·MG̃ϵi· →p 0, so the

consistency of this estimator follows almost immediately. Furthermore, assuming
√
T/N → 0

and
√
Tc2H1

→ 0 as (N, T ) → ∞, we have

√
NT (β̂ − β) = Q−1

(
1√
NT

N∑

i=1

X̃ ′
i·MG̃ϵi·

)
+ op(1).

In order to obtain the asymptotic normality of β̂, we analyze the variance of the above

expression for which we define W̃ ′
i· = X̃ ′

i·MG̃ and W̃·t = (W̃1t, . . . , W̃Nt)
′ as p× T and N × p

matrices, respectively. Then, by the law of iterated expectations, we can prove

V ar[
√
NT (β̂ − β)] =

1

NT

N∑

i=1

N∑

j=1

E
[
Q−1W̃ ′

i·ϵi·ϵj·W̃j·Q
−1
]

=
1

NT

T∑

t=1

T∑

s=1

E
[
Q−1W̃ ′

·tE(ϵ·tϵ·s|zt)W̃·sQ
−1
]

=
1

NT

T∑

t=1

E
[
Q−1P̃ P̃ ′Q−1

]

where P̃ is a p×T matrix such as P̃ = [W̃ ′
·1Ω (Z)1/2 , . . . , W̃ ′

·TΩ (Z)1/2]. Therefore, using the

above results we can conclude

√
NT (β̂ − β)

d−−→ N
(
0, Q−1ΨQ−1

)

where Ψ = limN,T→∞(NT )−1E
[
X̃ ′(IN ⊗MG̃)

′Ω (Z) (IN ⊗MG̃)X̃
]
given that rearranging

terms it is straightforward to show P̃ P̃ ′ = X̃ ′(IN ⊗MG̃)
′Ω(Z)(IN ⊗MG̃)X̃ and the proof of

the theorem is done.

Proof of Theorem 3.4: Let D ≡ (d1, . . . , dT )
′ and F ≡ (f1, . . . , fT )

′ are T × n and

T × r matrices, respectively, and ϵi· ≡ (ϵi1, . . . , ϵiT )
′ is a T × 1 vector, it can be written Ŷi· =

(IT −S)[Dαi+Xi·β+mi(Z)+Fγi]+ϵi·+Op(tr{H2
1}). Using the fact that MΛ̂(IT −S)D = 0,

sinceD ∈ Λ, and assuming that the rank condition holds. If we stack the resulting expression
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over NT observations and replace Ŷi· in (2.13), we get

β̂GLS =
[
X̂ ′(IN ⊗MΛ̂)Ω

−1(Z)(IN ⊗MΛ̂)X̂
]−1

X̂ ′(IN ⊗MΛ̂)Ω
−1(Z)(IN ⊗MΛ̂)

×
[
Xβ +

r∑

ι=1

Fι ⊗ γι + ϵ+Op(c
2
H1
)

]
, (I.12)

where Fι and γι are T × 1 and N × 1 vectors, for ι = 1, . . . , r, respectively, since it can be

proved that, uniformly in z, (NT )−1X̂ ′(IN ⊗MΛ̂)Ω
−1(Z)(IN ⊗MΛ̂)(IT −S)mi(Z) = Op(c

2
H1
)

by combining the proof scheme for Lemma 3 in Cai et al. (2019) and Lemma A.6 in Su and

Jin (2010).

As it is quite common in this type of literature, in (I.12) is observed the direct dependence

of β̂ of the observed and unobserved common factors (i.e. zt and ft). Using Lemmas 5.1-5.5

it is straightforward to show

β̂GLS − β =

[
X̃ ′(IN ⊗MG̃)Ω

−1(Z)(IN ⊗MG̃)X̃

NT

]−1
X̃ ′(IN ⊗MG̃)Ω

−1(Z)(IN ⊗MG̃)ϵ

NT

+ Op

(
1

N

)
+Op

(
1

NT

)
+Op(c

2
H1
), (I.13)

where MG̃ = IT − G̃(G̃′G̃)−1G̃−1 is a T × T projection matrix, G̃ = (D̃, F̃ ) is a T × (n+ r)

matrix.

Under the assumptions of the theorem it can be shown that (NT )−1X̃ ′(IN⊗MG̃)Ω
−1(Z)(IN⊗

MG̃)X̃
p→ Qϖ, where Qϖ = N,T→∞

(
(NT )−1X̃ ′(IN ⊗MG̃)Ω

−1(Z)(IN ⊗MG̃)X̃
)
. Hence, us-

ing this result and assuming
√
T/N → 0 and

√
NTc2H1

→ 0, as (N, T ) → ∞, we get

√
NT (β̂GLS − β) = Q−1

ϖ

(
X̃ ′(IN ⊗MG̃)Ω

−1(Z)(IN ⊗MG̃)ϵ√
NT

)
+ op(1) (I.14)

and the proof of the theorem is done.

Proof of Theorem 3.5: Plugging (2.17) in (2.18), a Taylor expansion leads to

√
T |H1|(m̂GLS(z,H1, ϖ)−m(z))−

√
T |H1|ι′1(T−1Z ′

zKH1(z)Zz)
−1Z ′

zKH1(z)

[
1

2
Qm(z) +Rm(z)

]

=
√
T |H1|ι′1(T−1Z ′

zKH1(z)Zz)
−1Z ′

zKH1(z)Ũ
(ϖ), (I.15)

whereQm(z) = [(z1−z)′Hm(z)(z1−z), . . . , (zT−z)′Hm(z)(zT−z)]′, Rm(z) is the residual term

of the Taylor expansion, and Ũ (ϖ) ≡ (ϖ′U·1, . . . , ϖ
′U·T )

′ is a T × 1 vector. Using standard
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nonparametric techniques it can be proved that ι′1(T
−1Z ′

zKH1(z)Zz)
−1Z ′

zKH1(z)Rm(z) =

op(tr{H2
1}) and that the asymptotic bias of m̂GLS(z;H1, ϖ) is

ι′1(T
−1Z ′

zKH(z)Zz)
−1Z ′

zKH1(z)

[
1

2
Qm(z) +Rm(z)

]
=

µq
2(K)

2
tr{H2

1Hm(z)}+ op(tr{H2
1}). (I.16)

Considering now the variance term of the right-hand side of (I.15) and using the law of

iterated expectations,

T |H1|V ar
(
T−1Z ′

zKH1(z)Ũ
(ϖ)
)

= T−1|H1|E[Z ′
zKH1(z)E[Ũ (ϖ)Ũ (ϖ)′|zt]KH1(z)Zz]

=

(
ν
(ϖ)
N (z)Rq(K)ρzt(z) Op(|H1|)

Op(|H1|) H2
1ν

(ϖ)
N (z)Rq

2(K)ρzt

)
, (I.17)

where ν
(ϖ)
N (z) = (ı′NΦ

−1
N (z)ıN).

Therefore, using Lemma 5.7 and (I.17), by the Slutsky theorem, as T → ∞,

V ar
[√

T |H1|ι′1(T−1Z ′
zKH1(z)Zz)

−1Z ′
zKH1(z)Ũ

(ϖ)
]
=

Rq(K)ν
(ϖ)
N (z)

ρzt(z)
. (I.18)

Finally, the Lyapunov condition can be proved under Assumption 3.16, and the proof of

the Theorem is completed.

Proof Theorem 3.6: Following a similar reasoning as in the proof of Theorem 3.5 and

denoting Ψ̂NT = X̃ ′(IT ⊗ MG̃)Ω̂
−1(Z)(IT ⊗ MG̃)X̃ and ΨNT = X̃ ′(IT ⊗ MG̃)Ω

−1(Z)(IT ⊗
MG̃)X̃, it is easy to show

β̂FGLS − β = Ψ̂−1
NT X̃

′(IT ⊗MG̃)Ω̂
−1(Z)(IT ⊗MG̃)ϵ+Op

(
1

N

)
+Op

(
1

NT

)
+Op(c

2
H1
)

β̂GLS − β = Ψ−1
NT X̃

′(IT ⊗MG̃)Ω
−1(Z)(IT ⊗MG̃)ϵ+Op

(
1

N

)
+Op

(
1

NT

)
+Op(c

2
H1
).

Using the fact {a1a2− b1b2 = (a1− b1)(a2− b2)+ (a1− b1)b2+ b1(a2− b2)} over the above
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results and rearranging terms,

β̂FLGS − β̂GLS =
(
Ψ̂−1

NT −Ψ−1
NT

)
X̃ ′(IT ⊗MG̃)

[
Ω̂−1(Z)− Ω−1(Z)

]
(IT ⊗MG̃)ϵ

+
(
Ψ̂−1

NT −Ψ−1
NT

)
X̃ ′(IT ⊗MG̃)Ω

−1(Z)(IT ⊗MG̃)ϵ

+Ψ−1
NT X̃

′(IT ⊗MG̃)
[
Ω̂−1(Z)− Ω−1(Z)

]
(IT ⊗MG̃)ϵ

+Op

(
1

N

)
+Op

(
1

NT

)
+Op(c

2
H1
)

= IIg1 + IIg2 + IIg3 +Op

(
1

N

)
+Op

(
1

NT

)
+Op(c

2
H1
), (I.19)

where the definitions of IIgl , for l = 1, 2, 3, should be apparent from the context.

Now we are going to analyze the behaviour of the above elements separately. Given

that ϖ̂ij(z) and ϖij(z) are the (ij)th element of Ω̂−1(Z) and Ω (Z), respectively, and using

Lemma 5.6 it is straightforward to show ∥Ω−1(Z) − Ω−1(Z)∥ = Op(NRTH), as N/T → κ,

where κ is a positive constant. Therefore, to finish the proof is enough to show

1

NT

(
Ψ̂NT −ΨNT

)
= op(1), (I.20)

1

NT
X̃ ′(IN ⊗MG̃)

′ [Ω−1(Z)− Ω−1(Z)
]
(IN ⊗MG̃)ϵ = Op((NT )−1/2)Op(NRTH). (I.21)

Considering the proof of (I.20), it has the norm bounded by

∥(NT )−1X̃ ′(IN ⊗MG̃)
′
[
Ω̂−1(Z)− Ω−1(Z)

]
(IN ⊗MG̃)X̃∥

≤ ∥(NT )−1X̃ ′(IN ⊗MG̃)X̃∥∥Ω̂−1(Z)− Ω−1(Z)∥
≤ ∥(NT )−1X̃ ′(IN ⊗MG̃)X̃∥∥Ω̂−1(Z)

(
Ω̂(Z)− Ω(Z)

)
Ω−1(Z)∥

≤ ∥(NT )−1X̃ ′(IN ⊗MG̃)X̃∥∥Ω−2(Z)∥∥Ω̂(Z)− Ω(Z)∥ = Op(NRTH),

using the fact that (NT )−1X̃ ′(IN ⊗ MG̃)X̃ = Op(NRTH), ∥Ω−1(Z)∥ = Op(1), ∥Ω̂(Z) −
Ω(Z)∥ = Op(NRTH) (see Lemma 5.6). Furthermore, Assumption 3.13 impliesNtr{H2

2}/tr{H2
1} →

0 and N(T |H1|)−1 = op((NT |H1|)−1/2) = op((T |H1|)−1/2), given that N3/(T |H1|) → 0.

Hence, NRTH = o((T |H1|)−1/2 + tr{H2
1}) and (I.20) is proved.

Under similar reasoning, it can be shown that (I.21) has the norm bounded by

∥(NT )−1X̃ ′(IN ⊗MG̃)
′[Ω̂−1(Z)− Ω−1(Z)](IN ⊗MG̃)ϵ∥

≤ (NT )−1/2∥(NT )−1/2X̃ ′(IN ⊗MG̃)ϵ∥∥Ω−2
N (Z)∥∥Ω̂(Z)− Ω (Z) ∥

= Op((NT )−1/2)Op(NRTH).
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Finally, using (I.20)-(I.21) in (I.19) it is straightforward to show

√
NT (β̂FGLS − β̂GLS) = Op(1) +Op

(√
T

N

)
+Op(

√
NTc2H1

)

and given that T/N → 0 and
√
NTc2H1

→ 0, as (N, T ) → ∞, the proof of the theorem is

done.

Proof Theorem 3.7: In order to prove this theorem, it can be written

m̂FLGS(z;H1, ϖ̂)− m̂GLS(z;H1, ϖ) = ı′1(Z
′
zKH1(z)Zz)

−1Z ′
zKH1(z)

(
̂̃
Y ϖ̂ − Ỹ ϖ

)
,

(I.22)

where
̂̃
Y and Ỹ are T ×N matrices whose it-th elements are such as ̂̃yit = yit − x′

itβ̂ − λ′
tδ̂i

and ỹit = yit − x′
itβ − λ′

tδi, respectively. Replacing (2.4) in (I.22) and rearranging terms, the

final expression to analyze is such us

|m̂FLGS(z;H1, ϖ̂)− m̂GLS(z;H1, ϖ)|

≤ ı′1

∥∥∥∥∥(Z
′
zKH1(z)Zz)

−1Z ′
zKH1(z)

[
U −

p∑

ϱ=1

Xϱ(β̂ϱ − βϱ)− Λ(δ̂ − δ)′

]∥∥∥∥∥ ∥ϖ̂ −ϖ∥, (I.23)

where U and Xϱ are T × N matrices and δ̂ and δ are N × ℓ matrices. From the results

in Lemma 5.7, it is straightforward to show ∥T−1Z ′
zKH1(z)Zz∥ = Op((T |H1|)−1/2), whereas

considering the behavior of the numerator term in (I.23), we have

∥∥∥∥∥T
−1Z ′

zKH1(z)

[
U −

p∑

ϱ=1

Xϱ(β̂ϱ − βϱ)− Λ(δ̂ − δ)′

]∥∥∥∥∥

≤ ∥T−1Z ′
zKH1(z)U∥+ ∥T−1Z ′

zKH1(z)X∥∥β̂ − β∥+ ∥T−1Z ′
zKH1(z)Λ∥∥δ̂ − δ∥. (I.24)

Using the consistency result obtained previously for β̂, it can be shown ∥β̂ − β∥ =

Op((NT )−1/2) and, under a similar reasoning, it is straightforward to show ∥δ̂ − δ∥ =

Op(T
−1/2). Following a similar reasoning as in Ruppert and Wand (1994) and using these res-

ults in (I.24), we can prove that ∥T−1Z ′
zKH1(z)X∥ and ∥T−1Z ′

zKH1(z)Λ∥ areOp((T |H1|)−1/2).

Using all these results in (I.24) and given that by Lemma 5.8 we get ∥ϖ̂−ϖ∥ = Op(NRTH)
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as N/T → κ, where κ is a positive constant, we have

ı′1∥T−1Z ′
zKH1(z)Zz∥∥T−1Z ′

zKH1(z)X∥∥β̂ − β∥ = op(NRTH), (I.25)

ı′1∥T−1Z ′
zKH1(z)Zz∥∥T−1Z ′

zKH1(z)Λ∥∥δ̂ − δ∥ = op(NRTH). (I.26)

Focusing now on the behavior of ∥T−1Z ′
zKH1(z)U∥ and using the Markov’s inequality, it

can be proved

∥T−1Z ′
zKH1(z)U∥ =

(
Op(∥Φ1/2

N (z)∥(T |H1|)−1/2)

Op(∥Φ1/2
N (z)∥tr{H2

1}(T |H1|)−1/2)

)
, (I.27)

given that, using the law of iterated expectations,

E

∥∥∥∥∥T
−1

T∑

t=1

KH1(zt − z)u·t

∥∥∥∥∥

2

= tr

{
T−2

T∑

t=1

E[K2
H1
(zt − z)E(u·tu

′
·t|zt)]

}

=
Rq(K)ρzt(z)

T |H1|
∥Φ1/2

N (z)∥ = Op

(
∥Φ1/2

N (z)∥
T |H1|

)

and E∥T−1
∑T

t=1 KH1(zt − z)(zt − z)u·t∥2 = Op

(
∥Φ1/2

N (z)∥tr{H2
1}

T |H1|

)
. Hence, under a similar

reasoning as in (I.25)-(I.26) and using Assumption 3.13 we have

ı′1∥T−1Z ′
zKH1(z)Zz∥∥T−1Z ′

zKH1(z)U∥ = op

(
ν
−1/2
N (z)√
T |H1|

+ tr{H2
1}
)

(I.28)

and plugging (I.25)-(I.26) and (I.28) in (I.23) the proof of the theorem is done.
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Koçak, E. and Z. Ş. Ulucak (2019). The effect of energy r&d expenditures on co 2 emission

reduction: estimation of the stirpat model for oecd countries. Environmental Science and

Pollution Research 26, 14328–14338.

Koch, N. and M. Themann (2022). Catching up and falling behind: cross-country evidence

on the impact of the EU ETS on firm productivity. Resource and Energy Economics 69,

101315.

Lee, J. and P. Robinson (2015). Panel nonparametric regression with fixed effects. Journal

of Econometrics 188, 346–362.

Marin, G., M. Marino, and C. Pellegrin (2018). The impact of the of the european emis-

sion trading scheme on multiple measures of economic performance. Environmental and

Resource Economics 71, 551–582.

Mazzanti, M. and A. Musolesi (2013). The heterogeneity of carbon kuznets curves for ad-

vanced countries: comparing homogeneous, heterogeneous and shrinkage/bayesian estim-

ators. Applied Economics 45 (27), 3827–3842.

Metcalf, G. E. and J. H. Stock (2023). The macroeconomic impact of Europe?s carbon taxes.

American Economic Journal: Macroeconomics 15 (3), 265–286.

Millimet, D. L., J. A. List, and T. Stengos (2003). The environmental kuznets curve: real

progress or misspecified models? Review of Economics and Statistics 85 (4), 1038–1047.

Musolesi, A. and M. Mazzanti (2014). Nonlinearity, heterogeneity and unobserved effects

in the carbon dioxide emissions-economic development relation for advanced countries.

Studies in Nonlinear Dynamics and Econometrics 18 (5), 521–541.

41
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