Believe me when I say green! Heterogeneous expectations and climate policy uncertainty

E. Campiglio^{1,2,3} F. Lamperti^{4,2} R. Terranova²

¹University of Bologna ²RFF-CMCC European Institute on Economics and the Environment ³London School of Economics, Grantham Research Institute ⁴Sant'Anna School of Advanced Studies

FSR Climate Annual Conference 2023 28 November

Introduction

Motivation

- Urgent to decarbonise
 - → Reorient private investment choices to low-carbon capital
- Firms make decisions based on expected profits
 - Depend also on expected climate policies
- How do firms form climate policy expectations?
 - Policy objectives as expectation anchor
 - Several longer-term announcements recently (net-zero dates → implicit carbon price trajectory)
- But will policy-makers actually deliver?

Rishi Sunak announces <u>U-turn on key</u> green targets

UK prime minister delays ban ou sale of new petrol and diesel cars as he pushes back net zero goals

• UK politics live - latest updates

Gilets Jaunes movement (2018)

Sunak planning to drop net zero policies in pre-election challenge to Labour

Plans set to be announced on Friday could include delaying han on sales of new petrol and diesel cars

"On energy, I will cancel job-killing restrictions on the production of American energy including shale energy and clean coal - creating many millions of high-paying jobs"

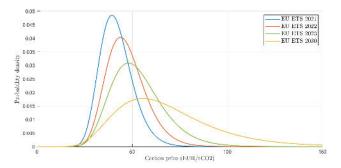

Donald Trump (2016)

Figure: Examples of policy reversals

- Numerous cases of policy reversals (Australia, US, France,..)
- Reason: often transition cost concerns
- This policy inconsistency may cause disalignment of firms' expectations
- Heterogeneous beliefs on policy credibility → Heterogeneous carbon price expectations

Heterogenous climate policy sentiments

- Evidence of heterogeneous expectations in climate policy
 - But.. very scarce data available!

Distribution of expected carbon price in the EU Emission Trading Scheme for different time horizons. Source: Cahen-Fourot et al. (2022). Data from Refinitiv (2021)

Research questions

- What are the effects of climate policy uncertainty on the transition to a low-carbon economy?
- How do heterogeneous firms expectations on climate policy evolve when the policy-maker fails meeting policy targets?
- What is the role played by behavioural factors such as bounded rationality, finite forward-looking planning horizons, etc.?

Literature

- Three broad literature connections
 - Climate policy credibility and uncertainty (e.g. Nemet et al., 2017; van der Ploeg and Rezai, 2020)
 - Policy time inconsistency (e.g. Kydland and Prescott, 1977; Barro and Gordon, 1983; Lange, 2023)
 - Bounded rationality and heterogeneous/biased expectations (Bordalo et al., 2022; Hommes, 2021), in particular insights by behavioural macro with heterogeneous agents
- Few closely related papers
 - Zeppini (2015); Mercure (2015); Cahen-Fourot et al. (2022); Galanis et al. (2022)

Model overview

- Dynamic model focusing on investment allocation choices
 - Two technologies: low-carbon (l) vs high-carbon (h)
 - Investment allocation depends on heterogeneous expected cost differentials
- Carbon price expectations affect investment choices
 - Firms observe policy-maker climate policy announcements
 - They evaluate its credibility: believers (b) vs sceptics (s)
 - Policy-maker can default on goals with high transition risks

Model overview

- Two key features of the model:
 - Heterogeneity of beliefs/expectations and behavioural frictions
 - Policy uncertainty and credibility

Analytical results

- Analytical investigation on reduced model. Two cases:
- Neoclassical limit (no heterogeneity):
 - Two steady states can exist depending on tax announcement and policy-maker commitment level
 - Ambitious announcements and weak commitment create multiple equilibria (a 'high-carbon trap')
- Behavioural frictions
 - Steady state existence conditions are modified
 - Low-carbon: 'behavioural premiums' on tax announcement and commitment minimum levels
 - But: High-carbon SS existence also harder to achieve

Numerical results

- Numerical calibration to the EU economy
 - Benchmark transition scenario
 - Full commitment vs weak commitment
- Full commitment case
 - Decarbonisation almost always achieved but behavioural frictions affect transition speed
- Weak commitment case
 - Loss of credibility can lead to vicious circles of increasingly high-carbon investments and weaker climate policies, ultimately leading to transition failure
- In both cases: non-linear effects of belief polarisation
 - Higher polarisation might lead to more rapid transitions

The model

Climate policy announcement

- At time t_0 , the policy-maker announces a schedule of future carbon tax targets $\bar{\tau}_t$
- We assume an exponential tax announcement

$$\bar{\tau}_t = \bar{\tau}_0 (1 + \bar{g}_\tau)^t$$

where $\bar{\tau}_0$ is initial tax rate and \bar{g}_{τ} is the announced growth rate of τ .

Firms' beliefs on carbon tax

- Firms have heterogeneous beliefs about credibility of policy commitment
 - Two belief categories: believers (*b*) trust policy-makers announcements more than sceptics (*s*)
- The expected tax growth rate is

$$E_j(g_\tau) = \epsilon_j \bar{g}_\tau$$

with $j = b, s, \epsilon_j \in [0, 1]$ indicating the degree of trust in the announced policy, and $\epsilon_b > \epsilon_s$

How do firms choose their beliefs?

- Building on Brock and Hommes (1997, 1998), in every *t*, firms
 - Observe tax actually implemented au
 - Compute inaccuracy $U_{j,t}$ of both belief predictions

$$U_{j,t} = \eta |E_{j,t-1}(\tau_t) - \tau_t| + (1 - \eta)U_{j,t-1}$$

• Believers' share $n \in (0, 1)$ is determined by

$$n_t = \frac{\exp(-\beta U_{b,t-1})}{\sum_j \exp(-\beta U_{j,t-1})}$$

- β: belief responsiveness (to what extent firms react to prediction errors)
 - $\beta = 0$: high behavioural frictions and random choice
 - $\beta \rightarrow \infty$: 'neoclassical limit', no behavioural frictions and bang-bang solutions

Cost expectations

 Depending on expected tax, firms evaluate the net present value Θ_i of expected production costs of technology i

$$E_{j,t}(\Theta_{i,t}) = \sum_{r=1}^{R} D^r \theta_{i,t+r} \left[1 + E_{j,t-1}(\tau_{i,t+r}) \right]$$

where

- D: discount factor
- R: planning horizon
- θ : *i*-specific production costs
- τ : tax rate on high-carbon production costs θ_h

Capital investments

- Based on expected discounted technological costs $(E_{j,t}(\Theta_{l,t}))$, firms allocate their investment between low- and high-carbon
- Low-carbon investment share for belief type j, $\chi_{j,t} \in (0, 1)$:

$$\chi_{j,t} = \frac{\exp(-\gamma E_{j,t}(\Theta_{l,t}))}{\sum_{i} \exp(-\gamma E_{j,t}(\Theta_{i,t}))}$$

- γ: investment responsiveness (to what extent firms react to cost differentials)
 - $\gamma = 0$: high behavioural frictions and random choice
 - $\gamma \rightarrow \infty$: 'neoclassical limit', no behavioural frictions and bang-bang solutions

Aggregate investment and capital allocation

• The low-carbon investment share for the overall economy is

$$\chi_t = n_{b,t} \chi_{b,t} + n_{s,t} \chi_{s,t}$$

• We define the low-carbon share of capital

$$\kappa_t \equiv \frac{K_{l,t}}{\sum_i K_{i,t}}$$

Transition risks and policy commitment

- Policy-maker evaluates transition risks as a function of
 - Announced policy stringency ($\bar{\tau}$)
 - Carbon intensity of economic system (κ)
- Transition risk index $\pi \in [0, 1)$:

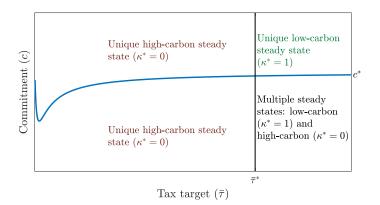
$$\pi_t = 1 - \frac{1}{1 + \alpha(1 - \kappa_t)\bar{\tau}_t}$$

where a represents vulnerability to transition risks

• Policy-maker then sets actual tax rate τ following:

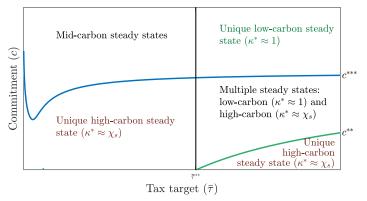
$$\tau_t = c\bar{\tau}_t + (1-c)\bar{\tau}_t(1-\pi_t)$$

where $c \in [0, 1]$ is the policy-maker commitment to climate objectives against transition cost mitigation

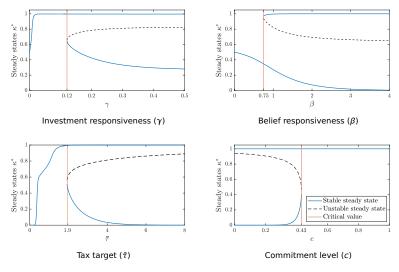

Analytical results

• Reduced version of the model

• e.g. $\bar{\tau}$ fixed; $\eta = 1$; $\epsilon_s = 0$; $\epsilon_b = 1$


- Dynamical system: $\kappa_{t+1} = f(\kappa_t)$ Details
- We consider two scenarios, differing in terms of belief and investments responsiveness
 - Neoclassical limit: $\beta = \gamma = \infty$
 - Behavioural frictions: $0 < \gamma < \infty$; $0 < \beta < \infty$

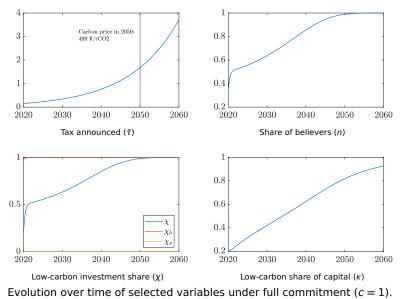
Steady states in the neoclassical limit


- Low-carbon steady state $\kappa_l^* = 1$ exists if $\bar{\tau} > \frac{\theta_l \theta_h}{\theta_h} \equiv \bar{\tau}^*$
- High-carbon steady state $\kappa_h^* = 0$ exists if $\bar{\tau} < \bar{\tau}^*$ or $c < \frac{1}{2} \mu_1 \equiv c^*$, where $\mu_1 = \frac{\bar{\tau} \tau_0(1 + a\bar{\tau})}{2a\bar{\tau}^2} > 0$

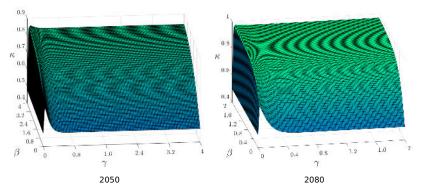
Steady states in the behavioural frictions

- Compared to neoclassical limit scenarios, two new regions:
 - Unambitious but committed policy-maker \rightarrow mid-carbon SS
 - Very ambitious but weakly committed policy-maker
 - → Unique high-carbon SS Details

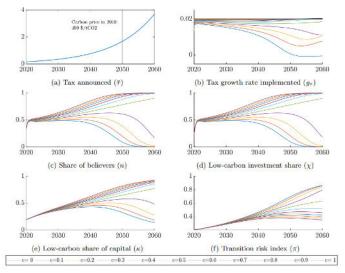
High-carbon trap drivers


Bifurcation diagrams. Default parameter values: $\bar{\tau} = 6, c = 0.3, \gamma = 0.5, \beta = 1$. Safe threshold

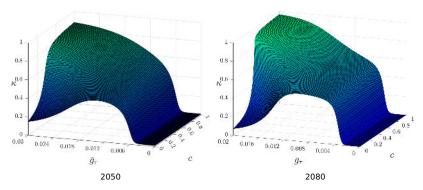
Calibration strategy


- Technological parameters (e.g. production costs)
 - Calibrated to European power sector
- Investment and opinion behaviours
 - $\bullet\,$ Esp. investment and belief responsiveness β and $\gamma\,$
 - Literature + sensitivity analysis
- Policy parameters
 - Calibrated on IAM projections
 - Scenario analysis
- Time: 160 quarters (2020-2060)

Benchmark transition scenario

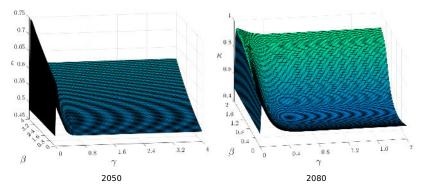

The role of behavioural frictions under full commitment

Low-carbon capital share κ as a function of belief responsiveness β and investment responsiveness γ , under c = 1, in (a) 2050 and (b) 2080.


- Behavioural factors affect transition speed
- Higher belief frictions (low β) hamper the transition
- Non-linear impact of γ in the medium-run

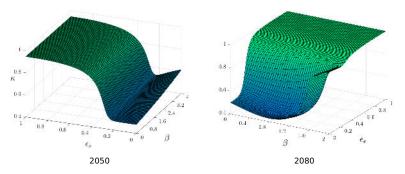
The credible commitment problem

Weak commitment \rightarrow credibility loss \rightarrow more high-carbon investments \rightarrow higher transition risks \rightarrow further distance from target \rightarrow further loss of credibility \rightarrow .. and so on


Tax announcements and policy-maker's commitment

Low-carbon capital share κ as a function of the tax target growth rate \bar{g}_{τ} and commitment c, in (a) 2050 and (b) 2080.

• High ambition and low commitment endogenously lead to a transition failure


The role of behavioural frictions under weak commitment

Low-carbon capital share κ as a function of belief responsiveness β and investment responsiveness γ , under c = 0.3, in (a) 2050 and (b) 2080.

- Higher β hampers transition as firms realise weak commitment
- Even higher β allows transition to take and keep enough momentum in early decades

Belief responsiveness and belief polarisation

Low-carbon capital share κ as a function of sceptics' discounting of the tax target growth rate ϵ_s and belief responsiveness β , under c = 0.3, in (a) 2050 and (b) 2080.

- For higher β, non-monotonic effect of belief polarisation
- But for lower *β*, strong polarisation leads to transition failure

Conclusions

- Transition model with
 - Behavioural frictions creating heterogeneity of expectations
 - Policy uncertainty and credibility
- Main results
 - Climate policy should be both ambitious and credible
 - Danger: Ambitious announcements by weakly committed policy-maker → emergence of high-carbon traps
 - Behavioural frictions (heterogeneity) makes the policy-maker's job harder, although they also help avoiding very bad equilibria
 - Belief polarisation can have non-linear effects on transition dynamics

Implications and future research

- Policy implications
 - Data on expectations and their distribution needed
 - Ability to orient expectations: what is most appropriate policy/institutional framework?
 - Get the ambition right: too little and too much are both dangerous for transition dynamics
- Further work
 - Endogenous commitment; electoral cycles
 - Wider macro behaviour (endogenous growth)
 - Financial investment choices
 - Climate physical impacts

European Research Council Stabilited 5 to Director Council

Thank you!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 853050 - SMOOTH)

References

- Barro, R. J. and D. B. Gordon (1983): "A Positive Theory of Monetary Policy in a Natural Rate Model," *Journal of Political Economy*, 91, 589–610.
- Bordalo, P., N. Gennaioli, and A. Shleifer (2022): "Overreaction and Diagnostic Expectations in Macroeconomics," *The Journal of Economic Perspectives*, 36, 223–244.
- Brock, W. A. and C. H. Hommes (1997): "A Rational Route to Randomness," *Econometrica*, 65, 1059–1096.

(1998): "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," *Journal of Economic Dynamics and Control*, 22, 1235–1274.

References

Cahen-Fourot, L., E. Campiglio, L. Daumas, M. G. Miess, and A. A. Yardley (2022): "Stranding Ahoy? Heterogeneous Transition Beliefs and Capital Investment Choices," .

- Galanis, G., I. Kollias, I. Leventidis, and J. Lustenhouwer (2022): "Generalizing Heuristic Switching Models," *Working Papers*, number: 0715 Publisher: University of Heidelberg, Department of Economics.
- Hommes, C. (2021): "Behavioral and Experimental Macroeconomics and Policy Analysis: A Complex Systems Approach," *Journal of Economic Literature*, 59, 149–219.
- Kydland, F. E. and E. C. Prescott (1977): "Rules Rather than Discretion: The Inconsistency of Optimal Plans," *Journal of Political Economy*, 85, 473–491, publisher: The University of Chicago Press.

References

Mercure, J.-F. (2015): "An age structured demographic theory of technological change," *Journal of Evolutionary Economics*, 25, 787–820.

Nemet, G. F., M. Jakob, J. C. Steckel, and O. Edenhofer (2017): "Addressing policy credibility problems for low-carbon investment," *Global Environmental Change*, 42, 47–57.

van der Ploeg, F. and A. Rezai (2020): "The risk of policy tipping and stranded carbon assets," *Journal of Environmental Economics and Management*, 100, 102258.

Zeppini, P. (2015): "A discrete choice model of transitions to sustainable technologies," *Journal of Economic Behavior & Organization*, 112, 187–203.

Policy-makers come and go

Tony Abbott (2014)

"..the repeal of the carbon tax means a \$550 a year benefit for the average family" "On energy, I will cancel job-killing restrictions on the production of American energy including shale energy and clean coal - creating many millions of high-paying jobs"

Donald Trump (2016)

Transition-related disruptions

- Transition-related costs (unemployment, stranding, financial volatility)
- $\bullet \rightarrow$ Diversion from plans

Gilets Jaunes movement (2018)

Dynamics of the low-carbon capital share

- Simplifying assumptions for analytical tractability
 - $\bar{\tau}$ is treated as a fixed parameter

• $\eta = 1$

•
$$\epsilon_s = 0 \rightarrow E_s(\tau_t) = \tau_0 \forall t$$

•
$$\epsilon_b = 1 \rightarrow E_s(\tau_t) = \bar{\tau} \forall t$$

κ evolves as follows:

$$\kappa_{t+1} = n_{b,t+1}(\chi_{b,t+1} - \chi_s) + \chi_s$$

where $n_{b,t+1}$ is a function of κ_t :

$$\begin{aligned} \eta_{b,t+1} &= \frac{1}{1 + \exp\left(-\beta\left(2\tau_t - \bar{\tau}_0 - \bar{\tau}\right)\right)} \\ \tau_t &= \bar{\tau}\left(c + \frac{1 - c}{1 + \alpha(1 - \kappa_t)\bar{\tau}}\right) \end{aligned}$$

Dynamical system and steady states

Dynamical system in κ

$$\kappa_{t+1} = (\chi_b - \chi_s)n_{t+1} + \chi_s \equiv f(\kappa_t),$$

with

$$n_{t+1} = \left[1 + \exp\left(-\beta \left\{2\bar{\tau}\left[c + \frac{1-c}{1+\alpha(1-\kappa_t)\bar{\tau}}\right] - \tau_0 - \bar{\tau}\right\}\right)\right]^{-1}$$

Proposition 1. $f(\kappa)$ has at least one stable equilibrium and generally an overall odd number of equilibria exists

- Equilibria with odd index are stable
- Equilibria with even index are unstable

Steady states under behavioural frictions

• A low-carbon steady state $\kappa_l^* = 1 - \lambda_l$ exists if a positive real number $\tilde{\lambda}_l$ exists such that Details

$$\bar{\tau} > \frac{\theta_l - \theta_h}{\theta_h} + \nu_{\tau l} \equiv \bar{\tau}^{**} \quad \text{and} \quad c > \frac{1}{2} - \mu_2 + \nu_{cl} \equiv c^{**}$$

• A high-carbon steady state $\kappa_h^* = \chi_s + \lambda_h$ exists if a positive real number $\tilde{\lambda}_h$ exists such that Details

$$c < \frac{1}{2} - \mu_3 + \nu_{ch} \equiv c^{***}$$

- ν parameters are 'behavioural premiums':
 - The higher behavioural frictions, the stronger should be tax announcements and commitment for low-carbon SS to exist
 - But they also decrease the commitment level below which a high-carbon SS exists Back

Steady states under behavioural frictions (I)

Proposition 3 (part I) Under the assumption of finite β and γ ,

(i) A low-carbon steady state $\kappa_l^* = 1 - \lambda_l$ exists if a positive real number $\tilde{\lambda}_l$ exists such that

$$\bar{\tau} > \frac{\theta_l - \theta_h}{\theta_h} + \nu_{\tau l} \equiv \bar{\tau}^{**} \quad \text{and} \quad c > \frac{1}{2} - \mu_2 + \nu_{cl} \equiv c^{**}$$
(1)

where

 $\tilde{\lambda_l} = \lambda_l + \varepsilon_l$, with ε_l a small positive number and $\tilde{\lambda_l} \in (0, \frac{1}{2})$,

$$\begin{aligned} \nu_{\tau l} &= \\ &- \ln \left(\frac{\tilde{\lambda}_l}{1 - \tilde{\lambda}_l} \right) \rho \{ \gamma \theta_l (1 + \rho) \left[1 - (1 + \rho)^{-(R+1)} \right] \}^{-1} \\ \nu_{cl} &= - \ln \left(\frac{\chi_b - 1 + \tilde{\lambda}_l}{1 - \tilde{\lambda}_l - \chi_s} \right) (2 \bar{\tau} \beta)^{-1} \left(1 + \frac{1}{a \tilde{\lambda}_l \bar{\tau}} \right), \text{ and} \\ \mu_2 &= \frac{\bar{\tau} - \tau_0 (1 + a \tilde{\lambda}_l \bar{\tau})}{2 a \tilde{\lambda}_l \bar{\tau}^2} > 0. \end{aligned}$$

Steady states in the behavioural frictions (II)

Proposition 3 (part II) Under the assumption of finite β and γ ,

(ii) A high-carbon steady state $\kappa_h^* = \chi_s + \lambda_h$ exists if a positive real number $\tilde{\lambda}_h$ exists such that

$$c < \frac{1}{2} - \mu_3 + \nu_{ch} \equiv c^{***}$$
 (2)

where

 $\tilde{\lambda}_h = \lambda_h + \varepsilon_h$, with ε_h a small positive number and $\tilde{\lambda}_h \in (0, \chi_b - \chi_s)$,

$$\begin{aligned} \nu_{ch} &= \\ -\ln\left(\frac{\chi_b - \chi_s - \tilde{\lambda}_h}{\tilde{\lambda}_h}\right) (2\bar{\tau}\beta)^{-1} \left\{1 + \frac{1}{a[1 - (\chi_s + \tilde{\lambda}_h)]\bar{\tau}}\right\}, \\ \text{and} \end{aligned}$$

$$\mu_{3} = \frac{\bar{\tau} - \tau_{0} \{1 + a[1 - (\chi_{s} + \tilde{\lambda}_{h})]\bar{\tau}\}\}}{2a[1 - (\chi_{s} + \tilde{\lambda}_{h})]\bar{\tau}^{2}} > 0$$

A safe threshold for the low-carbon steady state

Proposition 4. Once the planned tax meets its condition set in (1), a sufficient but not necessary condition for the uniqueness of the low-carbon steady state is:

$$\bar{\tau} < \frac{1}{\beta(1-c)}.\tag{3}$$

Back

Calibration: Production

• Exogenous macro landscape: $g_Y \approx 2\%$ per year

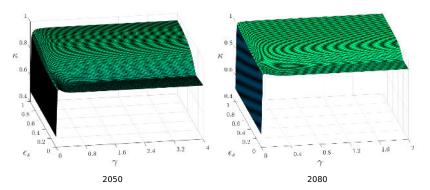
• European power sector (LCOE data from IEA)

Parameter	Symbol	Value
Output growth rate	g _Y	0.5%
Depreciation rate	δ	1.77%
Initial low-carbon capital share	κ ₀	0.2
Low- to high-carbon production cost	$\frac{\theta_l}{\theta_h}$	1.36

Calibration: Beliefs and investment decisions

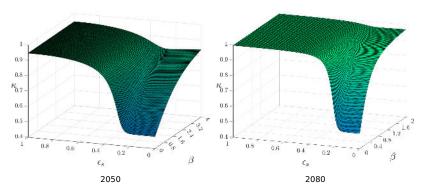
- Initial belief shares
 - Endogenously determined but in line with Refinitiv Carbon Market Survey)
- Belief responsiveness
 - $\beta = 1$ following Hommes (2021) + sensitivity analysis
- Investment responsiveness $\gamma = 2$
 - χ to fit initial investment shares values
 - transition as planned with full commitment

Parameter	Symbol	Value
Discount rate	ρ	1.7%
Planning horizon	R	100
Initial shares of believers Policy trust parameters Belief responsiveness Memory parameter Investment responsiveness	n ₀ ε _b ;ε _s β η γ	0.3 1; 0 1 0.5 0.5

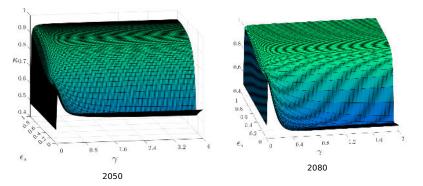

Calibration: Policy decisions

- $\bullet\,$ Current tax $\bar{\tau}_0$ calibrated on 2020 EU-ETS allowance prices
- Announced growth rate \bar{g}_{τ} calibrated on optimal mitigation pathways to reach 1.5-2°C
 - ENGAGE project involving 16 IAMs
- a = 1 to have low transition risk costs in 2020 $(\pi_0 \approx 0.15)$ and have $\pi_0 \approx 0.5$ for $\bar{\tau} \approx 1.2$

Parameter	Symbol	Value
Announced initial tax rate	$ au_0$	0.1
Announced tax growth rate	$\bar{g}_{ au}$	0.02
Transition risk index parameter	a	1
Policy-maker tax commitment	С	[0,1]


Back

Investment responsiveness and belief polarisation (c = 1)


Low-carbon capital share κ as a function of sceptics' discounting of the tax target growth rate ϵ_s and investment responsiveness γ , under c = 1, in (a) 2050 and (b) 2080. All other parameters at their default value.

Belief responsiveness and belief polarisation (c = 1)

Low-carbon capital share κ as a function of sceptics' discounting of the tax target growth rate ϵ_s and belief responsiveness β , under c = 1, in (a) 2050 and (b) 2080. All other parameters at their default value.

Investment responsiveness and belief polarisation (c = 0.3)

Low-carbon capital share κ as a function of sceptics' discounting of the tax target growth rate ϵ_s and investment responsiveness γ , under c = 0.3, in (a) 2050 and (b) 2080. All other parameters at their default value.