Results 00000000 Conclusion 00

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

How resilient is public support for carbon pricing? Longitudinal evidence from Germany

Stephan Sommer^{1,2} Théo Konc^{3,4} Stefan Drews⁵

¹Bochum University of Applied Sciences

²RWI – Leibniz-Institute for Economic Research

³Technical University Berlin

⁴Potsdam Institute for Climate Impact Research

⁵University of Málaga

FSR Climate Annual Conference 2023; November 27, 2023

Introduction	
•0	

Data ooc Results 00000000 Conclusion 00

Motivation

- Carbon pricing is key to mitigate GHG emissions and reach climate targets (World Bank 2022)
- But it is unpopular compared to other instruments (Rhodes et al. 2017)
- There is a large and growing literature on citizens' support for climate policies and carbon pricing (Bergquist et al. 2022; Carattini et al. 2018; Drews and Bergh 2016; Sommer et al. 2022)
- Most research is (repeatedly) cross-sectional (e.g. Murray and Rivers 2015), and little is known about the dynamics of public support, but understanding them is key (Kallbekken 2023)
- Schuitema et al. (2010) and Mildenberger et al. (2022) are exceptions

Introduction O Data 000 Results 00000000 Conclusion 00

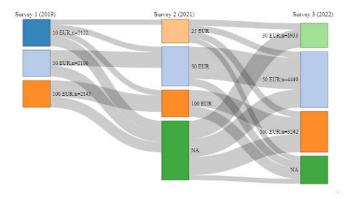
▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

This paper

- We conducted three panel surveys in Germany before (2019) and after the implementation (2021) of a carbon pricing scheme and the invasion in Ukraine (2022)
- We analyze the following two research questions
 - 1. How do attitudes to carbon pricing evolve over time?
 - 2. How do changes in support for carbon pricing depend on the policy's effects on expenditures and other factors?
- \Rightarrow We do not find that support changed over time
- ⇒ Among respondents who are vulnerable to high energy prices public support has decreased

Introduction 00 Data ●00 Results 00000000 Conclusion 00

Surveys


 We collaborated with a market research company and administered the first survey in the fall of 2019 (N=6,549 household heads)

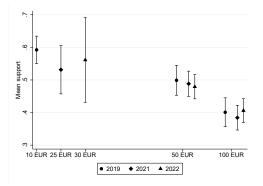
It included a hypothetical referendum about the support of a carbon price of $\in 10$, $\in 50$, and $\in 100$ (Sommer et al. 2022)

- In the summer of 2021, we conducted the second survey (N=8,677) with prices ∈ [25, 50, 100] €
- In the summer of 2022, we conducted the third survey (N=8,028) with prices ∈ [30, 50, 100] €
- \Rightarrow Overall, we were able to recruit 3,200 across all surveys
- $\Rightarrow\,$ 1,451 individuals reported answers to all relevant questions used in the empirical analysis

Introduction	Data	Results
00	000	00000000

Experimental design

- ► Respondents who saw a price of €50 or €100 in the first round got the same price again
- ▶ Respondents with €10 and €25 were split randomly across the three prices


Descriptive statistics

	2019	:	2021		2022
	Mean	Mean	t-Stat.	Mean	t-Stat.
(A) Socio-economic characte	ristics				
Age	57.8	59.3	(2.744)**	60.4	(4.787)**
Female	0.341	0.341	(-0.000)	0.341	(-0.000)
College degree	0.287	0.288	(-0.041)	0.287	(-0.041)
Household size	2.008	1.979	(-0.874)	1.967	(-1.301)
Income	2,967	3,004	(0.816)	3,049	(1.808)
Unemployed	0.023	0.022	(-0.257)	0.019	(-0.898)
Has children	0.642	0.643	(0.116)	0.629	(-0.734)
Homeowner	0.580	0.587	(0.376)	0.584	(0.188)
East Germany	0.256	0.254	(-0.085)	0.255	(-0.043)
Rural	0.229	0.220	(-0.580)	0.219	(-0.625)
(B) Carbon tax related					
Car owner	0.908	0.912	(0.389)	0.908	(0.000)
Gas heating	0.517	0.510	(-0.409)	0.523	(0.297)
Oil heating	0.203	0.184	(-1.289)	0.170	(-2.245)**
Other heating	0.280	0.306	(1.543)	0.307	(1.584)
High energy cost	0.401	0.447	(2.517)**	0.664	(14.527)**
(C) Attitudes					
Believe in climate change Pro-environmental attitudes Rather left AfD	0.806 10.975 0.305 0.077	0.894 11.049 0.191 0.066	(7.158)** (0.707) (-7.308)** (-1.193)	0.919 11.507 0.208 0.056	(9.244)** (5.052)** (-6.688)** (-2.312)**
Trust	0.385	0.509	(6.704)**	0.482	(5.244)**

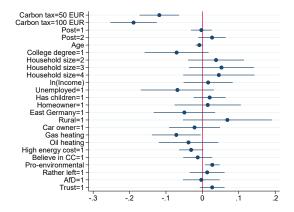
うとの m list A min A min

Introduction	Data	Results	Conclusio
00	000	●0000000	00


Support for carbon tax

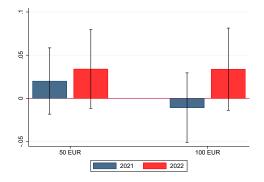
- In autumn 2019, 60% supported a carbon price of €10
- Support decreases with price level
- The support rates for a given price are very similar across the three waves

Introduction	Data	Results
00	000	0000000


Determinants of support in cross-sectional analysis

- E.g., support is higher among well-educated and more affluent individuals and linked with pro-environmental attitudes
- The determinants are similar in magnitude across the three waves

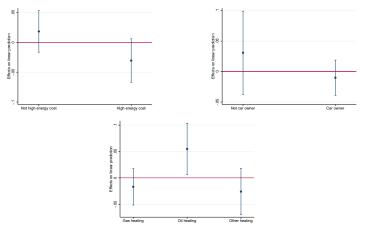
Introduction	Data	Results
00	000	000000


Determinants of support in longitudinal analysis

- Most of the determinants lose their explanatory power when using individual fixed effects
- ► No change in support over time for low prices (*Post*)

Introduction	Data	Results
00	000	0000000

Determinants of support in longitudinal analysis



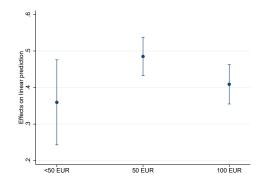
The negative effect of higher prices does not change over time (insignificant interactions of Post × Price)

Introduction	
00	

Results 00000000 Conclusion

Heterogeneity analysis

- The change in support depends on energy and transport related activities
- It does not vary with socio-economic characteristics and attitudes


Introduction		
00		

Results 00000●00 Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

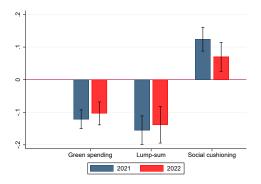
Dynamics of support

Data

- A lagged-dependent variable model indicates high auto-correlation of support
- This effect is very similar across the range of price levels

Introduction	Data	Results
00	000	00000000

Support of revenue uses in longitudinal analysis



Conclusion

Also when we ask for support of revenue uses, most variables do not show up as significant determinants

Introduction	Data	Results	Conclusi
00	000	0000000	00

Support for revenue uses

 Support for green spending and lump-sum payments has declined over time

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Support of social cushioning has increased over time

Results 00000000

Summary of findings

- Support decreases with price level, but not over time
- There are few changes in drivers of support and they cannot explain changes in support
- Panel methods identify that having high energy cost as being particularly relevant for policy support
- Green spending is most popular, but has lost popularity over time

Results 00000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

Policy implications

- As support does not change over time, it is crucial to gather support early on
- As support is not caused by environmental values, convincing people of climate change is unlikely to influence public opinion going forward
- As support decreases among respondents who are hit hard, environmental policies might be accompanied by social cushioning and policies addressing energy poverty

References I

- Bergquist, Magnus, Andreas Nilsson, Niklas Harring, and Sverker C Jagers (2022). "Meta-analyses of fifteen determinants of public opinion about climate change taxes and laws". In: *Nature Climate Change* 12.3, pp. 235–240.
- Carattini, Stefano, Maria Carvalho, and Sam Fankhauser (2018).
 - "Overcoming public resistance to carbon taxes". In: *Wiley Interdisciplinary Reviews: Climate Change* 9.5, e531.
- Drews, Stefan and Jeroen CJM Van den Bergh (2016). "What explains public support for climate policies? A review of empirical and experimental studies". In: *Climate Policy* 16.7, pp. 855–876.
- Kallbekken, Steffen (2023). "Research on public support for climate policy instruments must broaden its scope". In: *Nature Climate Change*, pp. 1–3.
- Mildenberger, Matto, Erick Lachapelle, Kathryn Harrison, and Isabelle Stadelmann-Steffen (Jan. 2022). "Limited impacts of carbon tax rebate programmes on public support for carbon pricing". In: Nature Climate Change. URL: https://doi.org/10.1038/s41558-021-01268-3.

References II

- Murray, Brian and Nicholas Rivers (2015). "British Columbia's revenue-neutral carbon tax: A review of the latest "grand experiment" in environmental policy". In: *Energy Policy* 86, pp. 674–683.
- Rhodes, Ekaterina, Jonn Axsen, and Mark Jaccard (2017). "Exploring citizen support for different types of climate policy". In: *Ecological Economics* 137, pp. 56–69.
- Schuitema, Geertje, Linda Steg, and Sonja Forward (2010). "Explaining differences in acceptability before and acceptance after the implementation of a congestion charge in Stockholm". In: *Transportation Research Part A: Policy and Practice* 44.2, pp. 99–109.
- Sommer, Stephan, Linus Mattauch, and Michael Pahle (2022). "Supporting carbon taxes: The role of fairness". In: *Ecological Economics* 107359.
- World Bank (2022). Carbon Pricing Dashboard | Up-to-date overview of carbon pricing initiatives. URL:

https://carbonpricingdashboard.worldbank.org/ (visited on 02/08/2022).