Introduction	No ETS	ETS	Comparative Dynamics	Conclusions

Emission permits and ECSR practice in an evolutionary duopoly

Gianluca IANNUCCI and Alessandro TAMPIERI

Department of Economics and Management, University of Florence

9th Economic Assessment of European Climate Policies European University Institute, $27^{th} - 28^{th}$ November 2023

			(
00000				
Introduction	No ETS	ETS	Comparative Dynamics	Conclusions

What is an Emission Trading System (ETS)

- A scheme that allocates emissions' rights to firms.
- Distribution of rights:
 - for free (grandfathering),
 - through an auction mechanism.
- Market-based instrument that gives an incentive to improve the internal emission abatement.
- Real world examples:
 - EU ETS (since 2005),
 - Regional Greenhouse Gas Initiative (since 2009),
 - California Cap and Trade (since 2013),
 - China National ETS (since 2021).

Introduction	No ETS	ETS	Comparative Dynamics	Conclusions
00000				

Environmental Corporate Social Responsibility (ECSR)

- ECSR firms commit to a behavior that takes into account:
 - profit,
 - consumers,
 - environment.
- Economic theory suggests strategic reasons (Kopel and Brand 2012 (EconMod), Lambertini and Tampieri 2015 (EconMod), *inter alia*). Why?:
 - socially and environmentally concerned consumers would buy from CSR firms;
 - ▶ a ECSR firm may force the rivals to reduce their production;
 - interaction with emission abatement policies.

Introduction	No ETS	ETS	Comparative Dynamics	Conclusions
00000				

Interaction between ETS and ECSR

Pros:

- ▶ Lee (2011, EnerPol): potential cost savings in industries.
- Gasbarro, Rizzi, Frey (2013, EurMangJ): sinergies between environmental management practices and compliance in the Italian pulp industry to EU ETS scheme.
- Kong, Liu, Dai (2014, CSREM): the introduction of a carbon emission right trading policy in China boosts the environmental protection initiatives among firms.

Cons:

- Doda, Gennaioli, Goundson, Grover, Sullivan (2015, CSREM): no impact on carbon emissions under the EU trading scheme.
- Martin, Muûls, Wagner (2016, REEP): inconclusive on the effects of the ETS on the diffusion of clean technologies.

Introduction	No ETS	ETS	Comparative Dynamics	Conclusions
000000	0000000	00000	0000	00

Interaction between ETS and ECSR

- > The ambiguous evidence calls for a theoretical explanation.
- Do markets regulated under ETS favor initiatives of environmental practice or not?
- The answer to this question is the scope of the present analysis.

 Introduction
 No ETS
 ETS
 Comparative Dynamics
 Conclusions

 000000
 00000
 0000
 0000
 00

Why evolutionary game theory (EGT)

- Evolutionary game theory allows to endogenize the firms' strategy choice in a mixed strategy context showing all the possible industry configurations that may arise.
- The dynamic framework helps to compare an industry regulated by an ETS with another one unconstrained.
- Applications of EGT to ETS games: Antoci, Borghesi, lannucci, Russu (2019, Meca), Antoci, Borghesi, lannucci, Sodini (2021, EneEco).
- Applications of EGT to CSR games: Kopel and Lamantia (2018, JEDC), lannucci and Tampieri (2023, EneEco).

Introduction	No ETS	ETS	Comparative Dynamics	Conclusions
00000	0000000	00000		00
The model				

- $N \ge 2$ Nash players firms competing in quantities.
- Unique homogeneous good.
- Two types of firms:
 - *m* ≥ 0 environmentally and socially concerned (ECSR), subscript *e*,
 - $N m \ge 0$ profit seeking (PS), subscript *p*.
- ► Choice variables: quantities (q) and abatement investments (z), and q z represents emissions.

Introduction	No ETS	ETS	Comparative Dynamics	Conclusions
	•000000			

Maximization problems

$$\max_{\substack{q_e, z_e \ge 0\\(q_e - z_e) \ge 0}} O_e = \underbrace{(p - c)q_e - \frac{1}{2}z_e^2}_{\pi_e} + \beta CS - (q_e - z_e)\delta$$
$$\max_{\substack{q_p, z_p \ge 0\\(q_p - z_p) \ge 0}} \pi_p = (p - c)q_p - \frac{1}{2}z_p^2$$

where:

$$p = \gamma - \sum_{i=1}^{m} q_i - \sum_{j=1}^{N-m} q_j$$
 and $CS = \frac{1}{2} \left(\sum_{i=1}^{m} q_i + \sum_{j=1}^{N-m} q_j \right)^2$

 $\gamma > 0$ is the output market reservation price, $\beta \in [0, 1]$ is the social concern, $\delta \in [0, 1]$ is the environmental concern.

8 / 25

Introduction	No ETS	ETS	Comparative Dynamics	Conclusions
	000000			

Optimal values

Assuming $\gamma - c = \mu$, we have:

Proposition

$$q_e^* = \frac{\mu - \delta + (\beta - \delta)(N - m)}{N - \beta m + 1}$$
$$z_e^* = \delta$$
$$q_p^* = \frac{\mu - (\beta - \delta)m}{N - \beta m + 1}$$
$$z_p^* = 0$$

Corollary

The condition $\delta \in (\underline{\delta}, \overline{\delta})$ is such that $q_p^* > 0$ and $q_e^* - z_e^* > 0$ for each market composition.

Introduction 000000	No ETS 00●0000	ETS 00000	Comparative Dynamics	Conclusions

Evolutionary setting

- A very large population of firms composed of both ECSR and PS. At each instant, two firms are randomly selected to play the one-shot game described above (Droste, Hommes, and Tuinstra 2002 (GEB)).
- The payoff of adopting a strategy is a function of the probability of encountering.
- x ∈ [0,1] is the share of ECSR firms on the market, and 1 − x the share of PS firms.

Introduction	No ETS	ETS	Comparative Dynamics	Conclusions
	0000000			

Expected profits

Optimal profits:

$$\pi_e^* = q_p^* q_e^* - \frac{\delta^2}{2}$$
$$\pi_p^* = (q_p^*)^2$$

The expected profit of the ECSR firm is:

$$\mathbb{E}(\pi_{e}^{*}(x)) = x\pi_{ee}^{*} + (1-x)\pi_{ep}^{*}$$

The expected profit of the PS firm is:

$$\mathbb{E}(\pi_{p}^{*}(x)) = x\pi_{pe}^{*} + (1-x)\pi_{pp}^{*}$$

Introduction	No ETS	ETS	Comparative Dynamics	Conclusions
	0000000			

Selection process

Replicator dynamics:

$$\dot{x} = x(1-x) \left[\mathbb{E}(\pi_e^*(x)) - \mathbb{E}(\pi_p^*(x)) \right]$$

- Three types of steady states:
 - x = 0, all firms are PS,
 - x = 1, all firms are ECSR,
 - $x \in (0, 1)$, coexistence if stable, segmentation if unstable.
- Only stable steady states are Nash equilibria.
- Denoting x* as a stable steady state, the corner ones
 x* ∈ {0,1} are pure Nash equilibria, while the inner x* ∈ (0,1) is a mixed-strategy Nash equilibrium (Bomze 1986, IJGT).

Introduction	No ETS	ETS	Comparative Dynamics	Conclusions
	0000000			

Industry configurations

Proposition

Three industry configurations may arise:

- All firms are ECSR, for $\delta \in (\hat{\delta}, \delta_4)$.
- All firms are PS, for $\delta \in (\delta_2, \overline{\delta})$.
- Mixed duopoly, for $\delta \in ((\underline{\delta}, \delta_2) \setminus (\widehat{\delta}, \delta_4))$.

Where δ_2 is one of the solution of the equation $\pi^*_{ep} - \pi^*_{pp} = 0$ and $\delta_{3,4}$ are the solution of the equation $\pi^*_{ee} - \pi^*_{pe} = 0$, while $\hat{\delta} = \max\{\underline{\delta}, \delta_3\}.$

Introduction	No ETS	ETS	Comparative Dynamics	Conclusions
	000000			

Dynamic regimes

E

 Introduction
 No ETS
 ETS
 C

 000000
 0000000
 000000
 000000
 000000

Conclusions

The model with ETS

Firms have to pay an allowance (a > 0) for emitting. Two stages game solved in backward induction.

1) The permit's price is market clearing and the government set the cap of the ETS (\overline{E}) :

$$(q_e^{* ets} - z_e^{* ets})m + (q_p^{* ets} - z_p^{* ets})(N - m) = \overline{E}$$

2) Firms maximization problems:

$$\max_{\substack{q_e^{ets}, z_e^{ets} \ge 0\\(q_e^{ets} - z_e^{ets}) \ge 0}} O_e^{ets} = (p^{ets} - c)q_e^{ets} - \frac{1}{2}(z_e^{ets})^2 + \beta CS^{ets} - (q_e^{ets} - z_e^{ets})(\delta + a)$$

$$\max_{\substack{q_p^{ets}, z_p^{ets} \ge 0\\(q_p^{ets} - z_p^{ets}) \ge 0}} \pi_p^{ets} = (p^{ets} - c)q_p^{ets} - \frac{1}{2}(z_p^{ets})^2 - (q_p^{ets} - z_p^{ets})a$$

Introduction	No ETS	ETS	Comparative Dynamics	Conclusions
		00000		

Optimal values

Proposition

$$a^* = \frac{N\mu - (N+1)\overline{E} - [(N+2)\delta + (\delta m + \overline{E})\beta]m}{(N - \beta m + 2)N}$$

$$q_e^* \stackrel{ets}{=} = \frac{\mu - \delta - a^* + [(1 - a^*)\beta - \delta](N - m)}{N - \beta m + 1}$$

$$z_e^* \stackrel{ets}{=} = \delta + a^*$$

$$q_p^* \stackrel{ets}{=} = \frac{\mu - a - [(1 - a)\beta - \delta]m}{N - \beta m + 1}$$

$$z_p^* \stackrel{ets}{=} = a^*$$

Corollary

The condition $\delta \in (\underline{\delta}^{ets}, \overline{\delta}^{ets})$ guarantees positive emissions and allowance price for each market composition.

DQA

Introduction	No ETS	ETS	Comparative Dynamics	Conclusions
		00000		

Existence regions

E

-

< A

990

Introduction	No ETS	ETS	Comparative Dynamics	Conclusions
		00000		

Industry configurations

Proposition

Denoting $x^{* \text{ ets}}$ as a stable steady state, four industry configurations may arise:

- All firms are ECSR, for $\delta \in (\widetilde{\delta}_1, \widetilde{\delta}_2)$.
- All firms are PS, for $\delta \in (\widetilde{\delta}_3, \overline{\delta})$.
- Mixed duopoly, for $\delta \in \left((\widetilde{\delta}_4, \widetilde{\delta}_5) \setminus (\widetilde{\delta}_1, \widetilde{\delta}_2) \right).$
- Segmentation, for $\delta \in (\delta_8, \delta_6)$.

Where $\tilde{\delta}_1 = \max\{\underline{\delta}, \delta_7\}$, $\tilde{\delta}_2 = \min\{\delta_6, \delta_8\}$, $\tilde{\delta}_3 = \max\{\delta_6, \delta_8\}$, $\tilde{\delta}_4 = \max\{\underline{\delta}, \delta_5\}$, $\tilde{\delta}_5 = \min\{\delta_6, \overline{\delta}\}$, $\delta_{5,6}$ are the solution of of the equation $\pi_{ep}^{* \ ets} - \pi_{pp}^{* \ ets} = 0$, while $\delta_{7,8}$ are the solutions of the equation $\pi_{ee}^{* \ ets} - \pi_{pe}^{* \ ets} = 0$.

0000	•0000	

Industry configurations

lannucci and Tampieri

Emission permits and ECSR in an evolutionary duopoly gianluca.iannucci@unifi.it

୬ < ୍ 19 / 25

э

 Introduction
 No ETS
 ETS
 Comparative Dynamics
 Conclusions

 000000
 000000
 00000
 000
 00
 00

Individual firm emissions at x^* and x^{*ets}

lannucci and Tampieri

Emission permits and ECSR in an evolutionary duopoly gianluca.iannucci@unifi.it

20 / 25

Ξ

590

Evolution of ECSR strategy w.r.t. the cap of the ETS

Iannucci and Tampieri

Emission permits and ECSR in an evolutionary duopoly gianluca.iannucci@unifi.it

୬ < ୍ 21 / 25

э

 Introduction
 No ETS
 ETS
 Comparative Dynamics
 Conclusions

 000000
 000000
 00000
 0000
 00
 00

Total Industry Profits and Consumer Surplus

990

э

4 A

 Introduction
 No ETS
 ETS
 Comparative Dynamics
 Conclusions

 000000
 000000
 0000
 000●
 00

Environmental Damage and Welfare

990

3

-

Introduction	No ETS	ETS	Comparative Dynamics	Conclusions
000000	0000000	00000		●0

Conclusions

- We study the interaction between ECSR practice and ETS policy.
- The introduction of an ETS favors the ECSR strategy reducing the region where all firms are PS.
- The introduction of an ETS may generate market segmentation.
- The stringency of the ETS policy (lower cap) favors the PS strategy.
- The ETS decreases the Total Industry Profits and the Consumer Surplus but by contrast reduces the Environmental Damage and increases the Welfare.

Introduction	No ETS	ETS	Comparative Dynamics	Conclusions
				00

THANK YOU

E

< A

∃ → -

990