Grandjean Gilles De Bevere Audric

UCLouvain Saint-Louis - Bruxelles & FRS-FNRS

FSR Climate Annual Conference 2023

Introduction

Carbon Pricing and Household Characteristics

The Choice of Revenue-recycling Lump-sum Design Targeted Schemes

Conclusion

Outline

Introduction

Carbon Pricing and Household Characteristics

The Choice of Revenue-recycling Lump-sum Design Targeted Schemes

Conclusion

EU Regulation: Fit for 55 package and ETS 2

- Under the Green Deal, the European Union is committed to reducing its GHG emissions by 55% between 1990 and 2030
- ▶ A key element of the *Fit for 55* package is the **Emissions Trading Scheme** (ETS)
 - Market-based instrument that prices emissions for large emitters from 2005
- ▶ It will be extended by 2027 into a new ETS 2 for road transport and buildings
 - Carbon price is capped at 45€/ton of CO2 during the first years of the scheme
- A quarter of ETS 2 revenues is used to finance the Social Climate Fund, in particular to protect households vulnerable to higher energy prices
 - It allows a redistribution towards the citizens

Literature: The Question of Public Acceptability

- ▶ Public acceptability of carbon pricing is highly dependant on the perceived equity of the reform (Dechezleprêtre et al., 2023; Bergquist et al., 2022)
- ► Households tend to **overestimate their expected loss** while a majority of them would gain from a tax & rebate reform (Douenne & Fabre, 2022)
- ► Addressing distributional concerns can help increase **social adhesion** (Dabla-Norris et al., 2023)
- In particular, revenue-recycling can be used to mitigate the impact on households

Literature: The Determinants of Carbon Pricing Impact

- ▶ Localisation (urban versus rural) and climate matters (Rausch et al., 2011)
- ► Importance of the **type of heating system** and the population **density** (Douenne, 2020)
- ► Targeting revenue recycling helps reduce energy poverty and/or make the reform progressive (Berry, 2019)

Example: Yellow Vests Movement in France

Research Questions

- ▶ What are the **distributive impacts** of carbon pricing in Belgium?
- ► What **characteristics** are associated with a higher carbon payment on transport and heating fuels?
- How the money collected can be used to compensate the most impacted households?

Methodology

► Microeconomic simulation

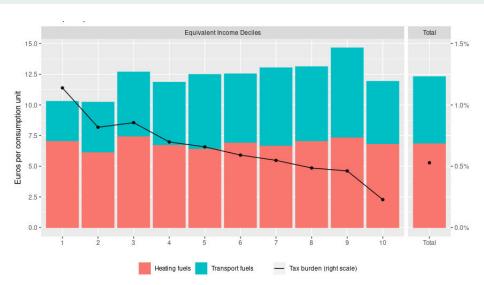
- Based on the 2018 Household Budget Survey (HBS)
- ▶ 6,000 households (HH) reported their monthly expenditures

► Microeconomic Simulation

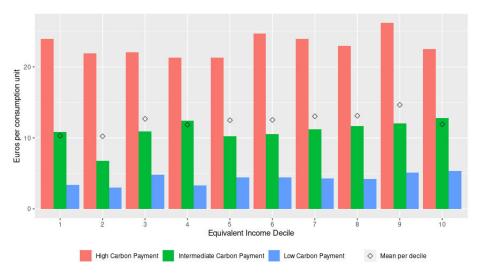
45€/ton of CO2 carbon price on fuel expenditures (heating and transport)

▶ Hypotheses

- 2018 energy quantities
- No wage uprating (indexation)
- Companies are not represented here
- ▶ No behavioral adaptation: *Day-after* effect


Macroeconomic results

Fuel	Gasoline	Diesel	Heating Oil	Natural Gas
Price increase	0.13 €/liter	0.14 €/liter	0.14 €/liter	9.5 €/MWh
Relative P. inc.	+ 8.7 %	+ 9.5 %	+ 20.2 %	+ 15.6 %
Total Revenues	€ 219 M	€ 273 M	€ 416 M	€ 365 M
Share by fuel	17.2 %	21.5 %	32.7 %	28.6 %


► Carbon pricing is expected to raise € 1,274 M of public funds annually

Carbon Pricing and Household Characteristics

Vertical Equity: The Carbon Price is Regressive

Horizontal Equity: Important Intra-decile Disparities

Impacts by Socio-demographic Characteristics

Characteristic	Tax Per	Tax	Energy	Variation	Large
	C.U	Burden	Poverty		Losers
Total	12.30	0.53 %	20 %	+ 3.3 p.p.	21.8 %
Age < 65	11.84	0.49 %	15.3 %	+ 2.8 p.p.	18.7 %
Age >= 65	15.58	0.84 %	43.5 %	+ 5.9 p.p.	37.3 %
Reg. Brussels	8.53	0.38 %	15.5 %	+ 2.4 p.p.	11.6 %
Reg. Flanders	11.21	0.45 %	17.2 %	+ 2.5 p.p.	16.9 %
Reg. Wallonia	15.45	0.74 %	26.4 %	+ 5 p.p.	33.9 %
Heating Other	5.18	0.24 %	14.1 %	+ 1.3 p.p.	4.6 %
Heating Gas	10.92	0.45 %	17.5 %	+ 3 p.p.	16.8 %
Heating Oil	20.44	0.91 %	30.1 %	+ 5.5 p.p.	46.1 %
		·	,		
Flat	8.51	0.44 %	22.8 %	+ 3.5 p.p.	18.6 %
House	13.21	0.54 %	19.1 %	+ 3.2 p.p.	22.6 %

Focus on the Type of Heating System

OLS Regression	Carbon Price	N. Obs. = 6,124		Adjusted $R^2 = 0.4$	
		Estimate	Std. Error	t value	Pr(> t)
	(Intercept)	-3.31	0.61	-5.45	0.000
Heating System	Oil	29.28	0.54	54.40	0.000
	Gas	10.07	0.45	22.18	0.000
Nbr. of Car(s)	2 or more	10.24	0.61	16.76	0.000
	1	5.01	0.48	10.49	0.000
Housing Type	House	4.17	0.43	9.63	0.000
Region	Wallonia	3.27	0.39	8.45	0.000
	Brussels	0.54	0.60	0.89	0.371
	Household Size	1.20	0.15	7.95	0.000

Outline

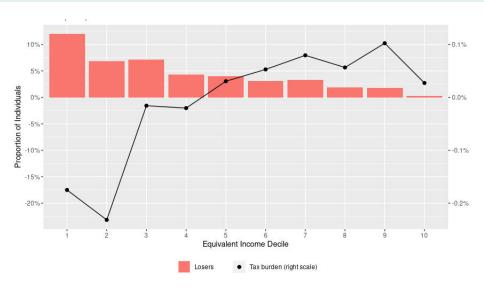
Introduction

Carbon Pricing and Household Characteristics

The Choice of Revenue-recycling

Lump-sum Design
Targeted Schemes

Conclusion


Outline

The Choice of Revenue-recycling Lump-sum Design

Lump-sum Design: Each Household Gets €23/month Back

- ► We redistribute all carbon price revenues back to citizens in a lump-sum fashion
- ► Budget-neutral tax reform
- ► Such a "carbon dividend" is quite **popular** among economists
 - ▶ Recommended by 3,000 US economists among which 28 Nobel Laureates
 - Implemented in Switzerland, Canada and Austria
- ► We obtain a *Net Tax Burden* at the HH level (% of income)
 - ► If <0, the HH benefit from the reform
- ► We compute the proportion of "Large Losers"
 - ► HH whose Tax Burden exceeds 1%

The Reform Becomes Progressive with Household Rebates

Outline

The Choice of Revenue-recycling

Targeted Schemes

- ► Lump-sum does not compensate all vulnerable household
 - Carbon pricing could push some of them further into (energy) poverty
- ► To foster public acceptability
 - Willingness to pay for climate change policies increases with income (Hersch & Viscusi, 2006; Kotchen et al., 2013); This results holds in the specific case of carbon taxation (Kotchen et al., 2017; Rotaris & Danielis, 2019)
 - Recycling schemes that lower income inequality gather stronger political support because of inequality aversion (Kallbekken et al., 2011)
- ► To support (energy-) poor household in their **energy transition**
 - E.g., Through the use of subsidies for investments in cleaner durable goods (heat pumps, electric cars)

Targeted Schemes: How?

- We use half the revenues on a targeted scheme and the other half on lump-sum redistribution for all
- ► Targeted Groups
 - ► Households heating with oil or gas (TH)
 - ► Three first deciles (T30)
 - Five first deciles (T50)
- ▶ We look at the *Tax Burden* and proportion of "*Large Losers*".

A Transfer Based on Heating Type Better Protects Vulnerable HH

	Tax Bu	ırden	Large Losers		
Characteristic	/HH	TH	/HH	TH	
Total	0 %	0 %	4.5 %	3.3 %	
Age < 65	0 %	0.01 %	3.6 %	2.9 %	
Age >= 65	-0.05 %	-0.08 %	8.6 %	5.6 %	
Reg. Brussels	-0.27 %	-0.24 %	1.2 %	1.3 %	
Reg. Flanders	-0.07 %	-0.03 %	2.8 %	2 %	
Reg. Wallonia	0.18 %	0.13 %	8.5 %	6.3 %	
Heating Other	-0.46 %	-0.09 %	0.1 %	0.9 %	
Heating Gas	-0.08 %	-0.06 %	2 %	2.1 %	
Heating Oil	0.49 %	0.2 %	13.5 %	8 %	
Flat	-0.37 %	-0.29 %	1.9 %	1.7 %	
House	0.1 %	0.08 %	5.2 %	3.8 %	

	/HH	T30	T50	TH50
Large Losers	4.5 %	4.8 %	3.6 %	3 %
1st Quartile	9.1 %	2 %	4.2 %	2.1 %
2nd Quartile	4.7 %	8.6 %	1.7 %	1 %
3rd Quartile	2.9 %	6.1 %	6.1 %	6.1 %
4th Quartile	1.2 %	2.6 %	2.6 %	2.6 %

Energy Poverty -0.8 p.p. -3.2 p.p. -2.5 p.p. -2.7 p.p.

Outline

Conclusion

- ► A stand-alone carbon price is regressive
- ► We observe significant heterogeneity across households of comparable income
 - The burden falls disproportionately on those heating with oil (or gas), living in a house and owning cars
- ► Lump-sum redistribution at the household level makes the reform progressive
- ► Targeted transfers help mitigate the impact on vulnerable households and, as such, could increase the political acceptability of the reform

- Exploit a density variable to consider "rural" targeted transfer (e.g., Austria)
- ► Short-term behavioural adaptation to higher energy prices
 - Quadratic Almost Ideal Demand System (QUAIDS)
- ► Longer term choice of durable goods (e.g., electric car, heat pump)
 - Discrete choice model

Thank you

Thank you!

References

- Bergquist, Magnus, Nilsson, Andreas, Harring, Niklas & Jagers, Sverker C. 2022 Meta-analyses of fifteen determinants of public opinion about climate change taxes and laws. Nature Climate Change 12 (3), 235–240.
- ▶ Berry, Audrey 2019 The distributional effects of a carbon tax and its impact on fuel poverty: A microsimulation study in the french context. Energy Policy 124, 81–94.
- ▶ Dabla-Norris, E., Helbling, T., Khalid, S., Khan, H., Magistretti, G., Sollaci, A. & Srinivasan, K. 2023 Public perceptions of climate mitigation policies: Evidence from cross-country surveys. Staff Discussion Notes 2023 (002).
- ▶ Dechezleprêtre, A., Fabre, A., Kruse, T., Planterose, B., Chico, A. S. & Stantcheva, S. 2022 Fighting climate change: International attitudes toward climate policies (1714).
- ▶ Douenne, Thomas 2020 The vertical and horizontal distributive effects of energy taxes: A case study of a french policy. The Energy Journal 41 (3).
- ▶ Douenne, Thomas & Fabre, Adrien 2022 Yellow vests, pessimistic beliefs, and carbon tax aversion. American Economic Journal: Economic Policy 14 (1), 81–110

- ► Hersch, J. & Viscusi, W. K. (2006). The generational divide in support for environmental policies: european evidence. Climate Change, 77, 121-136.
- ► Kallbekken, S., Kroll, S., & Cherry, T. (2011). Do you not like Pigou, or do you not understand him? Tax aversion and revenue recycling in the lab. Journal Of Environmental Economics And Management, 62(1), 53-64.
- ► Kotchen, M. J., Boyle, K. J. & Leiserowitz A. A. (2013). Willingness-to-pay and policy-instrument choice for climate-change policy in the United States. Energy Policy, 55, 617-625.
- ► Kotchen, M. J., Turk, Z. M. & Leiserowitz A. A. (2017). Public willingness-to-pay for a US carbon tax and preferences for spending the revenue. Environ. Res. Lett., 12 (9).
- ► Rausch, Sebastian, Metcalf, Gilbert E. Reilly, John M. 2011 Distributional impacts of carbon pricing: A general equilibrium approach with micro-data for households. Energy Economics 33, S20-S33, supplemental Issue: Fourth Atlantic Workshop in Energy and Environmental Economics.
- ▶ Rotaris, L. & Danielis, R. (2019). The willingness to pay for a carbon tax in Italy, Transportation Research Part D: Transport and Environment, 67, 659-673.