

# Is Germany becoming the European Pollution Haven?

Kathrine von Graevenitz, Philipp Richter and Elisa Rottner November 27 2023

ZEW Mannheim and University of Basel elisa.rottner@zew.de

#### In German manufacturing, emissions have increased



1

#### Use a Melitz-style model to

- retrieve an aggregate measure of regulation (emissions trading, energy prices, and command and control instruments)
- understand how important EU climate regulation is for German emissions development

#### Melitz-style model with heterogeneous firms

- Production is Cobb-Douglas in emissions and inputs
- Firms can invest in pollution abatement (at the cost of producing less output)
- multi-country (Germany, rest of EU, rest of world)
- multi-sector (11 manufacturing sub-sectors)

Preferences

$$U_{d} = \prod_{s} \left( \left[ \sum_{o} \int_{\omega \in \Omega_{o,s}} q_{od,s}(\omega)^{\frac{\sigma_{s}-1}{\sigma_{s}}} d\omega \right]^{\frac{\sigma_{s}}{\sigma_{s}-1}} \right)^{\beta_{d,s}}$$

Firms

#### Pollution

Competitive Equilibrium

Preferences

Firms

$$\pi_{od,s}(\varphi) = p_{od,s}(\varphi)q_{od,s}(\varphi) - w_o l_{od,s}(\varphi)\tau_{od,s} - t_{o,s}z_{od,s}(\varphi)\tau_{od,s} - w_d f_{od,s}$$

▶ Pareto

Pollution

Competitive Equilibrium

- Preferences
- Firms
- Pollution

$$z_{od,s}(\varphi) = (1 - a(\varphi))^{\frac{1}{\alpha_s}} \varphi I_{od,s}(\varphi)$$

• optimal abatement

Competitive Equilibrium

- Preferences
- Firms
- Pollution
- Competitive Equilibrium
  - Labour demand must equal labour supply in each country
     The expected profit that an entrepreneur obtains from drawing a productivity must equal the fixed cost of doing so (Free entry condition)

equilibrium conditions

#### Some things to note about how we use the model

- We aggregate the model to the sector-country level
- We rewrite the model in changes from a baseline (Dekle et al., 2008, "hat algebra") ◆ aggregate emissions ◆ equilibrium conditions in changes
- We define "shocks" to the model whose impact on emissions we measure
  - 1. German/EU regulation  $\hat{t}$

$$\hat{t}_{o,s} = \frac{\hat{M}_{o,s}^e \hat{w}_o}{\hat{Z}_{o,s}}$$

- 2. expenditure share shock  $\hat{\beta}$
- 3. competitiveness shocks: comprising all variables related to trade cost, productivity, and, for the rest of world, regulation
   competitiveness shocks

#### What we use the model for:

- Calculate historical shocks by plugging in parameter values, production and trade values
- Decompose: How did the shocks affect carbon emissions in Germany?

 $\sigma_s$ 

- Demand elasticities (substitutability)
- Recovered via markups ( $\kappa_s$ ), approximated with the ratio of revenues to variable cost:  $\sigma_s = \frac{1-\alpha_s}{(1-\alpha_s)-\frac{1}{\kappa_s}}$

 $\alpha_s$ 

- Abatement elasticity
- Approximated with output elasticity of energy, corrected by sector-level fuel mixes
- Output elasticity of energy as energy cost share (Syverson, 2011)
- $\theta_s$
- Pareto shape parameter of firm productivity ( $\varphi$ ) distribution
- Estimated using log sales rank of firms Parameter values

#### **Production and Trade Data**

General:

- Study period: 2005 to 2019
- Level: 11 manufacturing sectors sector list
- Level: 3 world regions (DE, EU, ROW)

Trade data

Eurostat data on German and EU trade

World output data

UNIDO INDSTAT data • comparison AFiD

Emissions, fuel mixes and energy prices • comparison AFiD

#### IEA data

### Historical regulation shock

## The stringency of regulation in Germany



ETS sectors: Paper, coke,

chemicals, non-metallic mineral products, metals

Other historical shocks

► AFiD emissions

## The stringency of regulation in the rest of the EU $\ensuremath{\mathsf{EU}}$



 Non-ETS sectors: Remaining sectors (food, textiles, furniture, cars, etc.)



#### 13

#### Counterfactual emissions regulation shock only



#### Counterfactual emissions regulation shock only



#### Counterfactual emissions regulation shock only



#### Germany as a European pollution haven:

- German industrial carbon emissions have increased because the implicit carbon price has decreased
- In fact, it has decreased more than in the EU
- This difference seems influential for the emissions development in German manufacturing...
- ...while competitiveness (and regulation) shifts in the rest of the world matter only little
  - We are talking a lot about the CBAM while intra-EU carbon prices differences might be a lot more relevant!

## Thank you very much!

Financial support from the Leibniz Association is gratefully acknowledged

### Appendix

**Productivity draw:** Firms draw a productivity from a Pareto distribution at the expense of a fixed cost  $f_{i,s}^e$ 

$$G\left(arphi;b_{i,s}
ight)=1-rac{(b_{i,s})^{ heta_s}}{arphi^{ heta_s}}$$

Cutoff productivity: Firms are indifferent whether or not to produce as they

make zero profits

$$\varphi_{id,s}^* = \left(\frac{\sigma_s}{\sigma_s - 1} \frac{c_{i,s}\tau_{id,s}}{P_{d,s}} \left(\frac{\sigma_s w_d f_{id,s}}{E_{d,s}}\right)^{\frac{1}{\sigma_s - 1}}\right)^{\frac{1}{1 - \alpha_s}}$$

▶ main

**Proposition 1:** Pollution intensity of a firm is locally decreasing in productivity. Pollution intensity of a sector is locally decreasing in taxes, productivity and trade liberalization

• From the FOC of the firm:  $1 - a = \left(\frac{w_o}{\varphi t_{os}} \frac{\alpha_s}{1 - \alpha_s}\right)^{\alpha_s}$ 

Trade liberalization redistributes market shares to more productive (and cleaner) firms

 To assess impact of non-marginal changes and take account of general equilibrium effects we need to use the quantitative model Labour market clearing: In equilibrium, labour markets clear

$$L_i = L_i^e + L_i^p + L_i^t + L_i^m + L_i^{nx}$$

Free entry: In equilibrium, the fixed cost of drawing a productivity are equal

to the expected profits of doing so

$$w_{i}f_{i,s}^{e} = \left(1 - G\left[\varphi_{ii,s}^{*}\right]\right) E\left[\pi|\varphi > \varphi_{ii,s}^{*}\right]$$

#### ▶ main

#### **Emissions in changes:**

$$\hat{Z}_o = \frac{\sum_s \frac{\hat{M}_{o,s}^e \hat{w}_o}{\hat{t}_{o,s}} Z_{o,s}}{\sum_s Z_{o,s}}$$

#### The equilibrium conditions in changes

#### Labour market clearing:

$$1 = \psi_o \left( \frac{\sum_{s} \hat{M}_{o,s} \hat{R}_{o,s} \frac{(\sigma_s - 1)(\theta_s - \alpha_s + 1)}{\sigma_s \theta_s} + \frac{1}{\hat{w}_o} \eta'_{os}}{\sum_{s} R_{o,s} \frac{(\sigma_s - 1)(\theta_s - \alpha_s + 1)}{\sigma_s \theta_s} + \eta_{o,s}} \right)$$

#### Free entry:

$$\hat{w}_{o} = \sum_{d} \frac{\zeta_{od,s} \left(\frac{\hat{w}_{o}}{\hat{b}_{o,s}}\right)^{-\theta_{s}} (\hat{\tau}_{od,s})^{-\frac{\theta_{s}}{1-\alpha_{s}}} (\hat{f}_{od,s})^{1-\frac{\theta_{s}}{(\sigma_{s}-1)(1-\alpha_{s})}} (\hat{t}_{o,s})^{-\frac{\alpha_{s}\theta_{s}}{1-\alpha_{s}}}}{\sum_{i} \lambda_{id,s} \hat{M}_{i,s}^{e} \left(\frac{\hat{w}_{o}}{\hat{b}_{o,s}}\right)^{-\theta_{s}} (\hat{\tau}_{od,s})^{-\frac{\theta_{s}}{1-\alpha_{s}}} (\hat{f}_{od,s})^{1-\frac{\theta_{s}}{(\sigma_{s}-1)(1-\alpha_{s})}} (\hat{t}_{o,s})^{-\frac{\alpha_{s}\theta_{s}}{1-\alpha_{s}}}} \hat{\beta}_{d,s} \frac{R_{d}' - NX_{d}'}{R_{d} - NX_{d}'}}$$

▶ main

#### Definition of competitiveness shocks:

$$\hat{\Gamma}^*_{\textit{od},s} \equiv (1/\hat{b}_{\textit{o},s})^{-\theta_s} (\hat{\tau}_{\textit{od},s})^{-\frac{\theta_s}{1-\alpha_s}} (\hat{f}_{\textit{od},s})^{1-\frac{\theta_s}{(\sigma_s-1)(1-\alpha_s)}}$$

#### Measurement of competitiveness shocks:

$$\hat{\Gamma}_{od,s}^{*} = (\hat{t}_{o,s})^{\frac{\alpha_{s}\theta_{s}}{1-\alpha_{s}}} \frac{\hat{\lambda}_{od,s}}{\hat{M}_{o,s}^{e}\hat{w}_{o}^{-\theta_{s}}} (\hat{P}_{d,s})^{\frac{\theta_{s}}{1-\alpha_{s}}} \left(\frac{\hat{\beta}_{d,s}}{\hat{w}_{d}} \frac{R_{d}' - \hat{NX}_{d}NX_{d}}{R_{d} - NX_{d}}\right)^{1 - \frac{\theta_{s}}{(\sigma_{s}-1)(1-\alpha_{s})}}$$

main

#### Table 1: Estimated parameter values

| NACE 2 Code  | $\theta_s$ | $\sigma_s$ | $\alpha_s$ |
|--------------|------------|------------|------------|
| 10 to 12     | 2.102      | 2.512      | 0.020      |
| 13 to 15     | 7.124      | 4.442      | 0.019      |
| 16           | 6.442      | 4.767      | 0.038      |
| 17 and 18    | 16.871     | 10.270     | 0.058      |
| 19           | 0.797      | 1.767      | 0.009      |
| 20 and 21    | 2.605      | 3.101      | 0.041      |
| 22           | 5.483      | 4.323      | 0.024      |
| 23           | 6.841      | 4.563      | 0.078      |
| 24           | 8.187      | 7.396      | 0.063      |
| 25 to 28, 33 | 7.063      | 6.194      | 0.010      |
| 29 to 32     | 5.147      | 6.133      | 0.008      |
|              |            |            |            |

▶ main

| Table 2: | Intermediate | results | for | the | parameter | estimation |
|----------|--------------|---------|-----|-----|-----------|------------|
|----------|--------------|---------|-----|-----|-----------|------------|

| NACE 2 Code  | Coefficient estimate for $\theta_s$ | markups | energy output elasticity | emissions elasticity |
|--------------|-------------------------------------|---------|--------------------------|----------------------|
|              | (1)                                 | (2)     | (3)                      | (4)                  |
| 10 to 12     | -1.391                              | 1.695   | 0.020                    | 0.974                |
| 13 to 15     | -2.065                              | 1.319   | 0.019                    | 1.002                |
| 16           | -1.708                              | 1.325   | 0.041                    | 0.873                |
| 17 and 18    | -1.825                              | 1.170   | 0.058                    | 0.962                |
| 19           | -1.038                              | 2.347   | 0.011                    | 1.001                |
| 20 and 21    | -1.239                              | 1.538   | 0.041                    | 0.993                |
| 22           | -1.652                              | 1.339   | 0.024                    | 1.012                |
| 23           | -1.924                              | 1.395   | 0.078                    | 0.946                |
| 24           | -1.277                              | 1.235   | 0.063                    | 0.993                |
| 25 to 28, 33 | -1.363                              | 1.206   | 0.010                    | 1.011                |
| 29 to 32     | -0.936                              | 1.203   | 0.008                    | 1.001                |

$$w_o L_{o,s}^p = (1 - \alpha_s) \frac{\sigma_s - 1}{\sigma_s} R_{o,s}$$

#### Measurement of $w_o L_{o,s}^p$ :

materials and labour expenditures, plus 0.2 times the capital stock



The output elasticity of emissions:

$$\frac{\partial q}{\partial z}\frac{z}{q} = \frac{\partial q}{\partial e} \times \frac{\partial e}{\partial z}\frac{z}{q} = \frac{\frac{\partial q}{\partial e}}{\frac{\partial z}{\partial e}}\frac{e}{q}\frac{z}{q}\frac{q}{e} = \frac{\frac{\partial q}{\partial e}\frac{e}{q}}{\frac{\partial z}{\partial e}\frac{e}{z}}$$

▶ main

#### Table 3: Analysed NACE 2 sectors

| NACE 2 Code  | Description                                                                                           |
|--------------|-------------------------------------------------------------------------------------------------------|
| 10 to 12     | Food, tobacco and beverages                                                                           |
| 13 to 15     | Textiles, wearing apparel, fur, leather and footwear                                                  |
| 16           | Wood products (no furniture)                                                                          |
| 17 and 18    | Paper, paper products, printing and publishing                                                        |
| 19           | Coke and petroleum                                                                                    |
| 20 and 21    | Chemicals, chemical products and pharmaceuticals                                                      |
| 22           | Rubber and plastic products                                                                           |
| 23           | Non-metallic mineral products                                                                         |
| 24           | Basic metals                                                                                          |
| 25 to 28, 33 | Fabricated metals, electronic products, electric equipment, engineering and installation of machinery |
| 29 to 32     | Vehicles, vehicle components, other transport, manufacturing n.e.c.                                   |

▶ main

#### Trade and output data

What does this data look like: Example for food/beverages (sectors 10 and 11)



#### Emissions data IEA versus AFiD



**Figure 1:** Aggregate emissions development in German manufacturing according to IEA and Manufacturing Census



**Table 4:** Percentage deviation between emissions from IEA and Germanmanufacturing Census across sectors

| NACE 2 Code  | Average deviation | Median deviation |
|--------------|-------------------|------------------|
| 10 to 12     | -0.033            | -0.039           |
| 13 to 15     | -0.055            | -0.055           |
| 16           | -0.032            | -0.031           |
| 17 and 18    | -0.011            | -0.017           |
| 19           | 0.129             | 0.142            |
| 20 and 21    | -0.060            | -0.095           |
| 22           | -0.038            | -0.039           |
| 23           | -0.074            | -0.080           |
| 24           | -0.318            | -0.345           |
| 25 to 28, 33 | -0.045            | -0.037           |
| 29 to 32     | -0.051            | -0.055           |
|              |                   |                  |

#### main

### Historical regulation shock



chemicals, non-metallic mineral products, metals

## The stringency of regulation in Germany (AFiD)



 Non-ETS sectors: Remaining sectors (food, textiles, furniture, cars, etc.)

▶ main

### Historical expenditure share shocks

#### Germany:



#### ROW:



EU:



main

### **Results - Historical wages**

#### Germany:



EU:



→ main

#### ROW:



### **Results - Historical entries**

#### Germany:



ROW:



EU:



🕨 main

$$\hat{t}_{i,s,t} = \beta_f \hat{p}_{i,s,t}^{energy} + \beta_{ets} \hat{p}_{i,s,t}^{ets} + \mu_{i,t} + \epsilon_{i,s,t}$$

#### **Table 5:** Determinants for the development of implicit carbon prices

|                            | $\hat{t}_{i,t,s}$ | $\mu_{i,t}$ |
|----------------------------|-------------------|-------------|
|                            | (1)               | (2)         |
| $\hat{p}_{i.s.t}^{energy}$ | 0.278***          |             |
|                            | (0.074)           |             |
| $\hat{p}_{i,(s),t}^{ets}$  | -0.001            | 0.251***    |
| .,(-),-                    | (0.015)           | (0.022)     |
|                            |                   |             |
| N                          | 330               | 330         |
| R <sup>2</sup>             | 0.49              | 0.28        |
|                            |                   |             |

Notes: The regressions include observations from 2005–2019. Dependent variables are indexed and are 1 in 2005. The regression in (1) is run with country by year fixed effects. Standard errors are displayed in parentheses. \*, \*\* and \*\*\* indicate significance at 10%, 5% and 1%, respectively.

#### Germany:



main

EU:



#### **Effective carbon prices**

#### Germany:



main

EU:



### Explaining the regulation shock

The time-specific component of the regulation shock develops similarly in DE and the EU:



▶ main

Why would German and EU implicit carbon prices develop similarly?

- EU ETS
- Common command and control regulations such as LCP, E-PRTR

Why would German and EU implicit carbon prices develop differently?

- Different fuel prices
- Different implementation of regulation (e.g., NAPs under EU ETS)
- Additional regulation on the level of single countries (e.g., renewable energy surcharge, exemptions from paying it)



#### Decomposition: The relevance of different shocks

How would emissions have evolved in counterfactual scenarios, two world regions?



## Counterfactual analysis: Equating carbon prices for Germany and the EU



For identical implicit carbon prices, German emissions would have increased



#### Decomposition: The relevance of different shocks

#### How would emissions have evolved in counterfactual scenarios?



This is quite stylized: German emission prices in reality do not change independently from EU emission prices... Two world regions main

#### Decomposition: The relevance of different shocks II

What about if we allow German and EU carbon prices to change simultaneously?



## Counterfactual analysis: Equating carbon prices for Germany and the EU



For identical implicit carbon prices, the German metal sector would have grown less **•** EU emissions