Carbon pricing and credit reallocation

Johanna Arlinghaus, Christian Bittner, Martin Götz, Nicolas Koch

International Conference on Ex-Post Evaluation of Emission Trading 20 June 2023

Banks have been subject to concurrent policy shocks over the past years

- 1. Increasingly stringent climate policies affect banks, including through their credit exposures to firms
- 2. Introduction of negative interest rates by the ECB caused some banks to adjust their lending and risk-taking behavior
- 3. How do these shocks interact? Evidence crucial to
 - understand the role of monetary policy in the transition to a low-carbon economy
 - > quantify the climate-related risks associated with bank lending

What is the role of climate policy for the transmission of monetary policy to bank credit supply?

- 1. Construct new dataset generating a unique coverage of lending activities, loan characteristics and emissions
- 2. Estimate effect of bank's interest rate shock exposure on
 - \triangleright credit volumes
 - collateral shares
 - default probabilities

differentially across ETS and non-ETS firms

Findings in a nutshell

Following an exogenous bank-level liquidity shock, banks

- increase lending to ETS firms
- decrease the default probabilities and collateral shares associated with the same loans

 \rightarrow Higher credit to ETS-firms provided by banks that are more affected by the NIRP also appears to be safer

 \rightarrow ETS firms may be more profitable than non-ETS firms, due to their investment in innovation technology

EU ETS

- Launched in 2005, covers 30 countries across Europe (EU27 plus Iceland, Liechtenstein & Norway)
- For each tonne of carbon emitted, firms must submit one permit, either from their own stock or purchased at auctions
- Important reforms were implemented for phase 3 (= our focus), increasing policy stringency:
 - Unionwide cap for stationary installations started to decrease on a yearly basis
 - ▷ MSR postponed the auctioning of a total of 900 million allowances in the early years of phase 3
 - New system of permit allocation based on product-specific benchmarks

Negative Interest Rate Policy (NIRP)

- ECB cut interest rate on overnight deposits held by Eurosystem banks to negative territory on June 5th 2014
- Aimed at expanding bank lending, to avoid negative interest rates on excess holdings of reserves
- NIRP affected banks with higher deposit-to-assets ratios more strongly (Heider et al., 2019):
 - Retail (= individual) investors can withdraw their funds and hold cash with a zero return instead
 - NIRP is more binding for banks with higher deposits-to-assets ratios

 \rightarrow exploit NIRP (esp: bank's deposits-to-assets ratio) as an exogenous bank-level liquidity shock

Data

- 1. Confidential credit registry, contains the universe of large credit relationships between German banks and firms
 - Banks report all loans to individual borrowers exceeding 1.5 million at quarter-end
 - Includes information on the outstanding loan amount, and loan characteristics, such as risk attributes and collateral value
- 2. Firm and bank balance sheet information from internal data sets: JANIS & BISTA
- 3. Use reported name in the EU-TL and a string-matching algorithm to identify which firms are ETS participants
- ▶ Eight quarters around NIRP introduction (Q1/13 Q1/15)
- Germany: Wide EU ETS coverage, strong relationships between banks and firms ("Hausbanken")

Descriptive statistics (full sample)

	Ν	Mean	St.Dev.	33th pct	55th pct	66th pct
Panel A: Bank-firm-quarte	er					
Credit (thsd €)	411,431	3,996	16,791	895	1,661	2,522
In(Credit)	411,431	7.01	1.92	6.8	7.42	7.83
RWA	396,052	2294.18	5327.82	400	1009	1811
PD	157,607	0.06	0.21	0	0	0.01
Collateral / Credit	408,923	0.37	0.44	0	0.14	0.53
Panel B: Firm						
Number of banks	32,142	1.54	3.2	1	1	1
Total Assets (MM €)	10,649	86.79	618.73	7.65	14.09	26.42
Profit / Sales	10,570	0.64	4.99	0.41	0.5	0.59
Sales / Assets	10,649	1.81	2.17	1.15	1.56	1.99
Age	10,628	33.62	36.15	15	22	32
Equity / Assets	10,649	0.31	0.22	0.18	0.29	0.39
Panel C: Bank						
Deposits / Assets	1,405	0.68	0.15	0.68	0.72	0.74

8 | 20

Empirical Strategy: Ideal experiment

Target estimate: Role of climate policy – namely, the EU ETS – in the transmission of monetary policy to bank credit supply:

$$ln(credit_{bft}) = \alpha + \beta_1 Post_t + \beta_2 ETS_f + \beta_3 Post_t \times ETS_f + \epsilon_{bft}$$

Identification challenges:

- 1. Monetary policy changes affect bank liquidity and firm loan demand simultaneously \rightarrow triple differences
- 2. By policy design, ETS-firms differ along several important dimensions from non-ETS firms \rightarrow matching

Empirical Strategy: Triple differences

1. Static/average effect

 $ln(credit_{bft}) = \beta Post_t \times ETS_f \times D/A_b + \alpha_{bt} + \alpha_{ft} + \alpha_{bf} + \epsilon_{fbt}$

2. Event study design

$$ln(credit_{bft}) = \sum_{j=Q1/2012}^{Q1/2016} \alpha_j \times D_j \times D/A_b \times ETS_f + \alpha_{bt} + \alpha_{ft} + \alpha_{bf} + \epsilon_{bft}$$

Empirical Strategy: Matching

- Plant-level inclusion criterions imply that ETS and non-ETS firms can be comparable (Calel and Dechezlepretre, 2016)
- Use information on firm balance sheet characteristics prior to the introduction of negative policy rates in June 2014
- Choose variables relevant for determining loan eligibility at firm-level, exact match on NACE2 sector

Matching proceeds in 2 steps:

- 1. Use coarsened exact matching (lacus, 2012) to discard firms that are poor candidates for matching
- 2. Each EU ETS firm is then matched to its nearest neighbour, using the GenMatch algorithm (Sekhon, 2022)

ETS and non-**ETS** firms differ in their balance sheet characteristics

	ETS	Non-ET	S Simple	Two-sided
	Mean	Mean	Diff	t-test p-value
Credit (thsd €)	6,050	2,420	3,630	0.00
Collateral / Credit	0.43	0.29	0.14	0.00
PD	3.09	6.09	-3.00	0.00
Total Assets (MM	€) 543.80	67.09	476.71	0.00
Profit / Sales	0.44	0.65	-0.21	0.39
Sales / Assets	1.46	1.82	-0.36	0.00
Age	49	33	16	0.00
Number of banks	5.71	1.45	4.26	0.00

Post-matching descriptive statistics and equivalence tests

	Non-ETS	ETS	Simple	Two-sided
	Mean	Mean	Diff	t-test p-value
Credit (thsd €)	5,766	6,364	598	0.37
In(Credit)	7.15	7.13	-0.02	0.91
PD	5.35	3.17	-2.18	0.07
Total Assets (MM \in)	275.57	434.13	158.56	0.01
Sales / Assets	1.42	1.50	0.08	0.35
Profit / Sales	.42	.46	0.03	0.21
Age	50.86	49.55	-1.32	0.72
Number of banks	3.23	3.94	0.71	0.09

Effect of bank's interest rate shock exposure on credit allocated to ETS firms (static)

	(1)	(2)	(3)	(4)
Post	-0.015			
	(0.059)			
Post × ETS	-0.226	-0.226		
	(0.236)	(0.236)		
Post $\times D/A$	-0.100	-0.098	-0.055	
	(0.116)	(0.116)	(0.104)	
$ETS \times D/A$	-0.120*	-0.120*	-0.128**	
	(0.070)	(0.070)	(0.059)	
$ETS \times D/A \times Post$	0.260**	0.259**	0.216**	0.420**
	(0.125)	(0.125)	(0.112)	(0.168)
N	27,010	27,010	26,449	22,114
Bank	Yes	Yes	Yes	
Firm	Yes	Yes	Yes	
Quarter		Yes	Yes	
Bank-Firm			Yes	Yes
Bank-Quarter				Yes
Firm-Quarter				Yes

Full sample results

14 | 20

Effect of bank's interest rate shock exposure on credit allocated to ETS firms (event study)

15 | 20

Effect of bank's interest rate shock exposure on collateral shares and default probabilities

	(1)	(2)	(3)	(4)	(5)	(6)
	C	Collateral share		Probability of default (PD)		
ETS x D/A	-0.074			-0.012		
	(0.058)			(0.020)		
ETS × Post	0.013	0.025*		0.019**	0.015*	
	(0.012)	(0.013)		(0.008)	(0.008)	
Post \times D/A	0.049	0.062**		-0.011	-0.007	
	(0.039)	(0.029)		(0.016)	(0.017)	
$ETS \times D/A \times Post$	-0.019	-0.051*	-0.073*	-Ò.054**	-0.042	-0.051*
	(0.027)	(0.027)	(0.038)	(0.025)	(0.026)	(0.027)
N	26,917	26,355	22,024	13,873	13,670	11,051
Bank	Yes	Yes		Yes	Yes	
Firm	Yes	Yes		Yes	Yes	
Time	Yes	Yes		Yes	Yes	
Bank-Firm		Yes	Yes		Yes	Yes
Bank-Date			Yes			Yes
Firm-Date			Yes			Yes

Summary and discussion

- How do monetary policy shocks interact with climate policy?
 - Evidence crucial to understand role of monetary policy in the transition to a low/zero-carbon future
- Banks more strongly affected by the NIRP policy adjust lending differentally across ETS and non-ETS firms
 - Lending volumes to ETS firms increase
 - Banks decrease the share of collateral and estimated probabilities of default (PDs) for credit exposures to ETS firms
- Banks may prefer lending to ETS firms since they increase investment and innovation
 - Findings consistent with Porter hypothesis (= firms benefit from env. regulation by increasing efficency and green innovation)

Next steps

- 1. **Abatement activity:** Did firms invest in emissions reduction technology?
- 2. **Innovation activity:** Do ETS firms with larger credit volumes innovate more?
- 3. **ETS stringency:** Do firms with permit shortages demand more credit?
- 4. **Model** to predict bank lending activity across ETS and non-ETS firms

Carbon pricing and credit reallocation

Johanna Arlinghaus, Christian Bittner, Martin Götz, Nicolas Koch

International Conference on Ex-Post Evaluation of Emission Trading 20 June 2023

Full sample results

	(1)	(2)	(3)	(4)
Post	-0.074***			
	(0.013)			
$ETS \times D/A$	-1.522***	-1.521***		
	(0.322)	(0.322)		
Post $\times D/A$	-0.013	-0.014	0.026	
	(0.023)	(0.023)	(0.023)	
$ETS \times Post$	-0.046	-0.047	-0.049	
	(0.044)	(0.044)	(0.031)	
$ETS \times Post \times D/A$	0.149**	0.152**	0.199***	0.105^{*}
	(0.068)	(0.068)	(0.046)	(0.062)
Bank	Yes	Yes	Yes	
Firm	Yes	Yes	Yes	
Time		Yes	Yes	
Bank-Firm			Yes	Yes
Bank-Date				Yes
Firm-Date				Yes
Ν	411,431	411,431	405,375	215,998

Back to presentation