

The distributional impacts of market-based climate policy

State of knowledge and future directions for research

International Conference on Ex-Post Evaluation of Emission Trading

Jan Christoph Steckel June 20th, 2023

The state of carbon pricing

FIGURE 5 MAP OF CARBON TAXES AND ETSs*8

25% of global emissions now covered by carbon pricing, increasingly in LMICs. Yet, prices are typically low.

Carbon pricing: Why, and why should we care about distributional effects?

Increasing amount of countries consider carbon pricing

- Effective in decreasing emissions where it has been applied thus far
- Can increase tax base
- Cover informal sector
- Generate revenues

Experiences with fossil fuel subsidy reforms and carbon pricing in the past

- Broad-based resistance, e.g. to rising energy prices
- Immediate price increases can lead to large protests that have the power to stop the reform
- Despite reform (partly) being progressive, i.e. pro-poor!

Not caring about distributional effects might make efficient policies politically unfeasible.

So, what do we know?

Indonesia, 2012

What determines policy acceptability?

Segment of Population	Criterion	Dimension of Distribution	Guiding questions
The Lower- Income Groups	Distributional effects	Vertical Distribution	What cost falls on the poorest members of society?

Segment of Population	Criterion	Dimension of Distribution	Guiding questions
The Lower- Income Groups	Distributional effects	Vertical Distribution	What cost falls on the poorest members of society?
Hardship Cases	Personal effects	Horizontal Distribution	Which households face the highest additional costs? What is the cost to households which are most important to political decision makers?*

Segment of Population	Criterion	Dimension of Distribution	Guiding questions
The Lower- Income Groups	Distributional effects	Vertical Distribution	What cost falls on the poorest members of society?
Hardship Cases	Personal effects	Horizontal Distribution	Which households face the highest additional costs? What is the cost to households which are most important to political decision makers?*
Hardly Accessible	Procedural aspects + use of revenues	Possibility of receiving transfers from government	Which households could be compensated <i>given</i> institutional set-up?

Segment of Population	Criterion	Dimension of Distribution	Guiding questions
The Lower- Income Groups	Distributional effects	Vertical Distribution	What cost falls on the poorest members of society?
Hardship Cases	Personal effects	Horizontal Distribution	Which households face the highest additional costs? What is the cost to households which are most important to political decision makers?*
Hardly Accessible	Procedural aspects + use of revenues	Possibility of receiving transfers from government	Which households could be compensated <i>given</i> institutional set-up?

Is a carbon price regressive?

- Systematic review and meta analysis based on 53 studies in 39 countries with 183 effects
- Subsidy reforms are per se not different from carbon pricing.
- More progressive study outcomes for:

Lower income countries
 Transport sector policies
 Including additional economic effects

Vertical distribution: Progressive vs. regressive results

Key result: Carbon pricing more progressive in poorer countries **Key mechanism**: Differences in energy expenditures drive results

Vertical distribution: Progressive vs. regressive distribution – Design matters

All effects refer to carbon price of USD 40 / t CO_2

4.43

6.08

159 Mt

149 Mt

Distributional effects can be very different on the regional level. But, regional level can be politically very important.

Segment of Population	Criterion	Dimension of Distribution	Guiding questions
The Lower- Income Groups	Distributional effects	Vertical Distribution	What cost falls on the poorest members of society?
Hardship Cases	Personal effects	Horizontal Distribution	Which households face the highest additional costs? What is the cost to households which are most important to political decision makers?*

Horizontal distribution: Which households face the highest costs?

- Instead of rich vs. poor, horizontal distribution compares differences within income groups
 - In Vietnam, a carbon price would be progressive.
 - But not all rich households face high costs. And not all poor households face low costs.
 - Focussing on vertical effects exclusively misses out on important parts of the picture.

How to describe empirically what determines being a hardship case?

- Availability of cross-sectional household data. Unavailability of exogeneous variation.
- Different concepts of "hardship case" conceivable:
 - Highest absolute costs
 - Highest costs (relative to income) / absolute or within income group
 - Highest costs and principal accessibility to governmental transfers?
 - Capability to substitute towards cleaner goods and services?

Possible methods to distill multi-dimensional factors:

- Descriptive statistics / t-test based analysis
 - In what terms do affected and non-affected households differ from each other?
- OLS regression
- Logistic model

• ...

- What is the probability of being especially affected conditional on income and socio-demographic factors?
- Inequality decomposition methods, variance decomposition (Fields, 2003)
- Principal component analysis, k-means clustering, gaussian mixture models, ...

Explaining the variation of carbon price incidences

	E.					jq		Co	oking	Fuel (I	Ref: El	ectrici	ty)															
	Total	expenditures (log)			Household S			Car ownersh		Cooking Fuel	(5		Natural Gas	Firewood			Education			Urban			Ethnicity		Electricity	access	
	а	b	С	а	b	С	а	b	С	а	b	С	b	С	b	С	а	b	С	а	b	С	а	b	С	а	b	С
Argentina	•	-	-		+	+	•	+	+	0	+		+		-	-		-	-							0	+	+
Barbados		-	-	0	+		•	+	+		+	+	+	+		-	0		-				0			0	+	+
Bolivia		-	-	0	+	+	•	+	+	•	-	-			-	-	0			0	+	+	0	-	-	•	+	+
Brazil		-	-	0	+	+	•	+	+	0					-	-	0				-	-	0	-	-	0	-	-
Chile		-	-	0	+	+																						
Colombia		-	-	0	+	+		+	+	•	+	+	+	+	-	-		-	-	0	-	-	0	-	-	0	+	+
Costa Rica	0	-	-	0	+	+	•	+	+	•	+	+			-		0	-		0	-	-	0			0	+	+
Dominican Republic	0	-	-	0	-	-	٠	+	+	0	R	ef.			-	-	0	-		0	-	-				0	+	+
Ecuador		-	-	0	+	+	•	+	+	0	+				-	-	0			0		-	0	-	-	0	+	+
El Salvador		-	-	•	+	+	•	+	+	•					-	-	0	+	+	0						0		
Guatemala	0		-	0	-	-	۲	+	+	•	R	ef.			-	-				0	+	+		-	-	0	+	+
Mexico	0	-	-	0	+	+	٠	+	+	•	+	+	+	+			0	-		0		-	0	-	-	0	+	+
Nicaragua		+	+	0			•	+	+	•		+					0			0	-	-	0	+		0		
Paraguay		-	-	0			0	+	+	•	+	+						-	-	0						0	+	
Peru		-	-	0	+	+	0	+	+	•	+	+	-		-	-	0	-		0		+	0		+	0	+	+
Uruguay		-	-	0	+		•	+	+	0	+	+	+	+			0	-		•	-	-	0			0	-	-

Column **a** indicates which variables explain cumulatively at least 95% of variation in carbon pricing incidence (\oplus or \bullet). Variables that explain by themselves at least 10% of total variance in carbon pricing incidence are marked with a full disk (\bullet). All variables with an empty disk (\circ), together, contribute less than 5% of the variation in carbon pricing incidence.

Effect on the poorest: The case of cooking fuels

- Carbon taxation might be detrimental to development targets
 - Equity: Welfare losses for poor households, and susceptibility to energy poverty
 - <u>Health</u>: Increased biomass consumption due to fossil fuel price hikes and resulting indoor air pollution
 - Gender: Women could divert time from market work to collect firewood

 Increasing the price of formal fuels in countries with a high penetration of traditional cooking can push people to collecting more firewood / charcoal again, with negative health effects. Also: Greve and Lay (2023): Stepping down the ladder.

Segment of Population	Criterion	Dimension of Distribution	Guiding questions
The Lower- Income Groups	Distributional effects	Vertical Distribution	What cost falls on the poorest members of society?
Hardship Cases	Personal effects	Horizontal Distribution	Which households face the highest additional costs? What is the cost to households which are most important to political decision makers?*
Hardly Accessible	Procedural aspects + use of revenues	Possibility of receiving transfers from government	Which households could be compensated <i>given</i> institutional set- up?

Possibilities to use revenues

Table 1 | Recycling mechanisms ranked according to efficiency, equity and acceptability

Recycling mechanism	Efficiency	Equity	Acceptability	Accessibility
Labour tax (initial system non-optimal)	+	+	0	-
Labour tax (initial system optimal)	0	0	0	-
Capital/corporate tax (initial system non-optimal)	+	-	0	-
Capital/corporate tax (initial system optimal)	0	-	0	-
Directed transfers	0	+	+	?
Uniform transfers (initial system non-optimal)	0	+	+	?
Uniform transfers (initials system optimal)	+	+	+	?

Equity and efficiency are determinants of acceptability, but the evaluation of acceptability focuses on the other factors that determine it. We use the definition of optimal as given in the section on public economics. Plus (+) and minus (-) signs indicate positive and negative evaluations, respectively, whereas 0 indicates a neutral evaluation.

Investments in infrastructure? Other?

Coverage of existing social transfer schemes

Using existing social security schemes to keep transaction costs low

- The case of Ecuador: Fossil fuel subsidy reform
- Using existing schemes vs. creating new instruments compensation
- Existing social transfer schemes can be used to make distributional outcome progressive

An integrative approach for Latin American countries

- Not all of the most affected households have access to transfer programmes
- Some of them are poor
- Who would be left behind?
- How to design carbon pricing and/or compensation schemes to target those that need to be targeted?

Investing in (green) infrastructure

Carbon pricing could **mobilize domestic resources** to finance the SDG agenda.

Especially promising for **middleincome countries** (higher revenues and lower gaps than LDCs).

For LDCs, most SDG funding would need to come from the **international community**.

Still incentive for carbon pricing as a **source of revenue** to broaden the tax base.

Distributional effects are largely progressive

- 60% of population lack access to basic infrastructure
- Spending revenues for transfers or infrastructure investments?
- Double progressivity when using revenues to finance infrastructure investment
- But: Huge time lag, will likely not help with respect to acceptability

What determines acceptability?

Modified from Maestre-Andres et al. 2019

What determines acceptability?

Table 1 | Average estimated and true rebate sizes for sample, by province

Province	Average perceived rebate (CDN\$)	True average rebate (CDN\$)
Received federal rebate		
Saskatchewan	268 (13)	444
Ontario	149 (11)	217
Did not receive federal rebate		
British Columbia	63 (9)	0
Alberta	83 (9)	0
Québec	54 (10)	0

Standard errors in parentheses. See Methods for details on calculating true average rebate.

People are often not well-informed regarding the transfers they receive

Subjective evaluation closely linked to political orientation (e.g. Dounne and Fabre 2022)

	Dep. variable: Chan	ge in public support
	Parameter Estimate	Marginal effect at mean
Revenue recycling scheme:		
Direct transfers – entire population	-1.2 *	-0.17
(baseline: Government budget)	(0.65)	
Direct transfers - targeted population	0.48	0.05
(baseline: Government budget)	(0.57)	
Green spending	2.91 *	0.15
(baseline: Government budget)	(1.23)	
Tax cuts – income, labour, and consumption	0.08	0.01
(baseline: Government budget)	(0.58)	
Other – corporate tax cuts and social services	-0.55	-0.7
(baseline: Government budget)	(0.51)	
Policy type:		
Тах	0.72	0.08
(baseline: Fossil fuel subsidy reform)	(1.76)	
Carbon pricing policy in place:		
Yes	0.81	0.08
(baseline: No)	(0.75)	

People do not seem to like lump-sum transfers!

Results from a systematic review of the literature covering 352 observations from 69 surveys.

Baseline specification regression coefficients with standard errors in parentheses as well as the marginal effects at mean.

Dependent variable: change in public attitude with revenue recycling scheme

* p < 0.10, ** p < 0.05, *** p < 0.01

What's next?

Thank you

steckel@mcc-berlin.net

@jan_c_steckel

		Vertical effe	cts		н	Comparison				
Country	Q _{min}	Q _{max}	ΔV	ΔH_1	ΔH_2	ΔH ₃	ΔH_4	ΔH_{5}	$\frac{\min(\Delta H_i)}{\Delta V}$	$\frac{\max(\Delta H_i)}{\Delta V}$
Bangladesh	1	5	1.1%	0.9%	0.9%	1.1%	1.6%	2.2%	0.9	2.0
India	5	1						1.9%	3.7	5.3
Indonesia	2	5	Im	nortant f	or policy i	2.7%	4.8	6.1		
Pakistan	1	5		to identi	fu hardeh	in cococ?		1.8%	0.9	1.3
Philippines	1	5	ПОМ		ily fiarusfi	ip cases :		1.1%	0.8	1.2
Thailand	5	2						2.4%	2.4	3.1
Turkey	5	2	1.3%	5.4%	5.3%	4.4%	3.4%	2.1%	1.6	4.2
Vietnam	1	4	1.6%	3.1%	3.7%	3.0%	2.6%	2.3%	1.4	2.3

Table 1 | Vertical and horizontal effects of a US\$40 national carbon price

 Q_{min} and Q_{max} refer to the quintile that is least or most affected at the median, respectively. ΔV denotes the difference between the median values of Q_{min} and Q_{max} . ΔH_i refers to the difference between the 20th and the 80th percentile within each national quintile *i*. Note that underlying data were subject to outlier treatments and data cleaning (Methods and Supplementary Information). Differences between comparison column and ΔH or ΔV might arise from rounding up at all columns. Division is carried out with non-rounded values.

Note that the literature has not yet settled on how to quantify horizontal effects

Stepping down the ladder: The impacts of fossil fuel subsidy removal in Ghana

HH step down the ladder: increased # of HH mainly use firewood for cooking (3.3 percentage points)

No change in average LPG expenditure: Quantity consumed drops

Urban households increase charcoal consumption at the intensive margin by around 15 percent to substitute for LPG

Fossil fuel subsidy removals can lead to large adjustments in HH fuel choices; potential harmful implications need to be considered

Fig. 1 | Visual summary of the relationship between determinants and public opinion about climate change taxes and laws. Higher levels of ideology represent identifying as left or liberal. Gender is coded 0, male; 1, female. Geometrical centres of the diamond shapes represent mean values and end-points represent ±95% CI.

Institutional Capability: How to compensate?

No revenue recycling

Institutional Capability: How to compensate?

Institutional Capability: How to compensate?

Horizontal distribution: Which households are affected exactly?

• Dialogue with Israeli stakeholders

Which groups of society might be of particular importance in the public debate?

Calculation of household-specific "risk profile"

What is the probability that a household bears relatively high costs conditional on income and socio-demographic factors?

Decomposing horizontal effects

Identify the most affected households from carbon pricing through the factor source decomposition analysis (Shorrocks, 1982)

- By ranking the relative importance of each consumption category (i.e. factor) in explaining the inequality in total household carbon tax burden
- Relative contribution equals to the ratio of the covariance between a factor and total tax burden divided by the variance of the total tax burden.

Cross-country energy demand analysis (consumer demand systems)

- We estimate the EASI demand system to compute price elasticities of demand for **fossil fuels vs. traditional biomass**, to understand if carbon pricing can raise demand for biomass
 - Sample of 9 LMICs (Ethiopia, Ghana, India, Indonesia, Kenya, Malawi, Mongolia, Niger and Uganda)
 - We account for censored expenditure data in household surveys by combining Tobit models with efficient GMM methods

 Goal: Provide menu of policy options incl. feasible revenue redistribution and/or tax exemption for cooking fuels in LMICs