Weitzman Meets Taylor: ETS Futures Drivers and Carbpn Cap Rules G. Benmir

Ex-Post Evaluation of Emission Trading – EUI

Ghassane Benmir

London School of Economics and Political Science PSL Research – Université Paris Dauphine

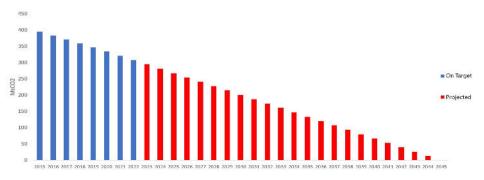
June 20, 2023

Main question:

What are the drivers of the ETS carbon price?

Motivation

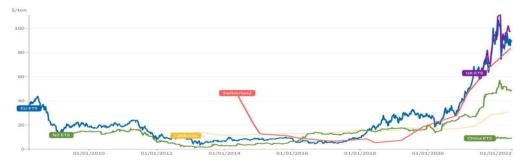
IMPLICIT CARBON PRICE: MAIN MITIGATION TOOL


1. Carbon pricing is gaining momentum world wide

Source: International Carbon Action Partnership

IMPLICIT CARBON PRICE: MAIN MITIGATION TOOL

- 1. Carbon pricing is gaining momentum world wide
- 2. Cap-and-Trade Market is the major tool used in climate change mitigation



California Emissions Cap - 2045 Carbon Neutrality

Constructed using International Carbon Action Partnership

IMPLICIT CARBON PRICE: MAIN MITIGATION TOOL

- 1. Carbon pricing is gaining momentum world wide
- 2. Cap-and-Trade Market is the major tool used in climate change mitigation
- 3. The inherent carbon price is expected to increase to meet net-zero by 2050

World Cap and Trade System Carbon Prices (in USD) Source: International Carbon Action Partnership

- Volatility of the implicit carbon price could induce:
 - "Business cycle uncertainty" costs for firms
 - Financial stability concerns?

Financial Market Unbalances

Cap-and-trade markets as privilege tool to mitigate carbon

Cap-and-trade markets as privilege tool to mitigate carbon

Potential impacts on business cycle, financial stability, and welfare costs associated with a high and volatile price of carbon

Cap-and-trade markets as privilege tool to mitigate carbon

Potential impacts on business cycle, financial stability, and welfare costs associated with a high and volatile price of carbon

Cap-and-trade markets as privilege tool to mitigate carbon

Potential impacts on business cycle, financial stability, and welfare costs associated with a high and volatile price of carbon

∜

Need for a Macro-finance Framework:

- ► i) ETS cap policy
- ii) Energy market
- and iii) Higher frequency estimation

Paper Objectives and Main Results

WHAT WE DO

In this paper, we provide new evidence on

i) Empirical:

How to estimate the ETS price drivers using a novel strategy

ii) Theoretical:

 How to implement carbon cap rules to reduce uncertainty over the business cycle

MAIN PAPER MESSAGE

- The two main drivers of the EU ETS are Abatement shocks and Climate Sentiment shocks
- ► The EU ETS is found to be significantly **more volatile** than the SCC
- Carbon cap rule could reduce this volatility

1. We focus on the business cycle fluctuation and not the long-run climate policy impacts

- 1. We focus on the business cycle fluctuation and not the long-run climate policy impacts
- 2. We use a cap policy and not a full cap-and-trade micro structure

- 1. We focus on the business cycle fluctuation and not the long-run climate policy impacts
- 2. We use a cap policy and not a full cap-and-trade micro structure
- 3. We model energy as composit, whereby energy can get greener and do not explicitly model different sources of energy

- 1. We focus on the business cycle fluctuation and not the long-run climate policy impacts
- 2. We use a cap policy and not a full cap-and-trade micro structure
- 3. We model energy as composit, whereby energy can get greener and do not explicitly model different sources of energy
- 4. We consider the EU as a closed economy (i.e. no carbon leakage and full cooperation)

Carbon pricing and market frictions: Goulder [2013], Jenkins [2014], Metcalf [2019], Shapiro and Metcalf [2021], and Bernard and Kichian [2021], Kanzig [2021], among others

Carbon pricing and market frictions: Goulder [2013], Jenkins [2014], Metcalf [2019], Shapiro and Metcalf [2021], and Bernard and Kichian [2021], Kanzig [2021], among others

 \Rightarrow **How we differ**: We estimate the drivers of the ETS carbon price and not how carbon price impacts the macroeconomy

Carbon pricing and market frictions: Goulder [2013], Jenkins [2014], Metcalf [2019], Shapiro and Metcalf [2021], and Bernard and Kichian [2021], Kanzig [2021], among others

 \Rightarrow **How we differ**: We estimate the drivers of the ETS carbon price and not how carbon price impacts the macroeconomy

 Carbon Price Drivers: Hintermann et al. [2016], Borenstein et al. [2019], and Friedrich et al. [2020]

Carbon pricing and market frictions: Goulder [2013], Jenkins [2014], Metcalf [2019], Shapiro and Metcalf [2021], and Bernard and Kichian [2021], Kanzig [2021], among others

 \Rightarrow **How we differ**: We estimate the drivers of the ETS carbon price and not how carbon price impacts the macroeconomy

 Carbon Price Drivers: Hintermann et al. [2016], Borenstein et al. [2019], and Friedrich et al. [2020]

 \Rightarrow **How we differ**: We estimate abatement cost shocks and climate sentiment shocks using a novel strategy while we don't have data on abatement

 Carbon Price Drivers: Montgomery [1972], Weitzman [1974], Rubin [1996], Karp and Traeger [2018], among others

 Carbon Price Drivers: Montgomery [1972], Weitzman [1974], Rubin [1996], Karp and Traeger [2018], among others

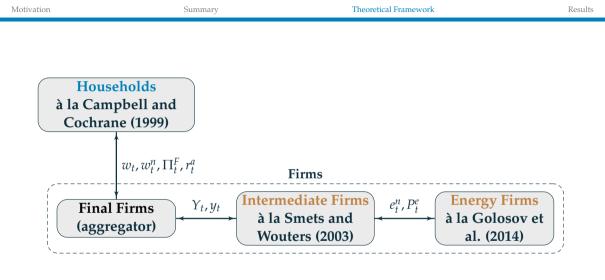
 \Rightarrow How we differ: We cast both abatemet uncertainty and climate sentiment uncertainty into a DSGE framework

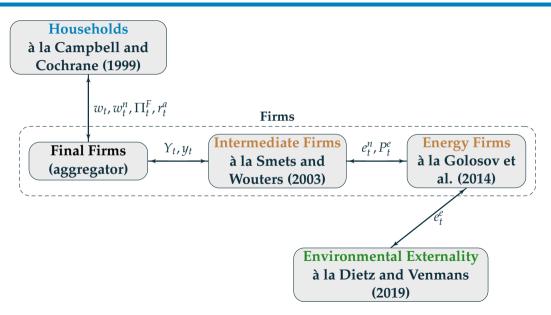
 Carbon Price Drivers: Montgomery [1972], Weitzman [1974], Rubin [1996], Karp and Traeger [2018], among others

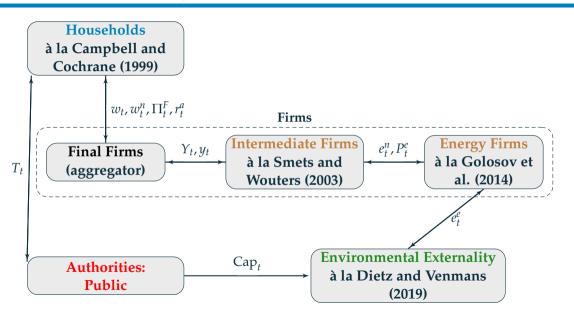
 \Rightarrow **How we differ**: We cast both abatemet uncertainty and climate sentiment uncertainty into a DSGE framework

 Macro framework and carbon pricing: Fowlie (2010), Acemoglu et al. (2012), Aghion et al. [2016], among others

 Carbon Price Drivers: Montgomery [1972], Weitzman [1974], Rubin [1996], Karp and Traeger [2018], among others


 \Rightarrow **How we differ**: We cast both abatemet uncertainty and climate sentiment uncertainty into a DSGE framework


 Macro framework and carbon pricing: Fowlie (2010), Acemoglu et al. (2012), Aghion et al. [2016], among others


 \Rightarrow How we differ: We make use of Bayesian estimation to investigate the ETS drivers

E-DSGE

Households à la Campbell and Cochrane (1999)

Full Model

- Environmental Externality: •• more
- Energy Firms: •• more
- Intermediate Firms: •• more
- Final Firms: more
- Households: more
- ► Fiscal Authority: → more
- Monetary Authority: •• more

ENVIRONMENTAL EXTERNALITY: CLIMATE DYNAMICS

Following Dietz and Venmans (2019), CO₂ cumulative emissions X_t in the atmosphere is the sum of domestic E_t and international E^{Row}_t emission flows:
 X
 ⁱ
 ⁱ
 ^k
 ⁱ
 ^k
 ^k
 ⁱⁱⁱ
 ^k
 ^k

ENVIRONMENTAL EXTERNALITY: CLIMATE DYNAMICS

Following Dietz and Venmans (2019), CO₂ cumulative emissions X_t in the atmosphere is the sum of domestic E_t and international E^{Row} emission flows:
 X
 ⁱ = E_t + E^{Row}
 ⁱⁱ (1)

In our framework, the total emissions flow reads as:

$$E_t = \int_0^1 e_{j,t}^e dj \tag{2}$$

 $e_{j,t}^{e}$ are emissions from energy firms.

ENVIRONMENTAL EXTERNALITY: CLIMATE DYNAMICS

Following Dietz and Venmans (2019), CO₂ cumulative emissions X_t in the atmosphere is the sum of domestic E_t and international E^{Row} emission flows:
 X
 ⁱ = E_t + E^{Row}
 ⁱⁱ (1)

In our framework, the total emissions flow reads as:

$$E_t = \int_0^1 e_{j,t}^e dj \tag{2}$$

 $e_{j,t}^{e}$ are emissions from energy firms.

• Temperature T_t^o reads as:

$$\dot{T}_t^o = \phi_1(\phi_2 X_t - T_t^o)$$
 (3)

ENERGY AND NON-ENERGY FIRMS: PRODUCTION Our economy is comprised of two sectors: $\{e^n, y\}$

The energy firms employ capital and labour to produce energy, which is then supplied to the intermediate non-energy firms (all other sectors):

$$e_{j,t}^{n} = A_{t}^{n} k_{j,t}^{n \alpha_{n}} l_{j,t}^{n \ 1-\alpha_{n}}$$
(4)

ENERGY AND NON-ENERGY FIRMS: PRODUCTION Our economy is comprised of two sectors: $\{e^n, y\}$

The energy firms employ capital and labour to produce energy, which is then supplied to the intermediate non-energy firms (all other sectors):

$$e_{j,t}^{n} = A_{t}^{n} k_{j,t}^{n \alpha_{n}} l_{j,t}^{n \ 1-\alpha_{n}}$$
(4)

Intermediate non-energy firms produce goods using energy, capital and labour as follows:

$$y_{j,t} = A_t \underbrace{d(T_t^o)}_{\text{Convex Damages}} k_{j,t}^{y \ \alpha_1} e_{j,t}^{n \ \alpha_2} l_{j,t}^{y \ 1-\alpha_1-\alpha_2}$$
(5)

where A_t and A_t^n the TFPs are driven by a Brownian motion B_t (e.g. $dA_t = \mu(A_t)dt + \eta(A_t)dB_t$).

ENERGY FIRMS: EMISSIONS AND ABATEMENT INVESTMENT

• Energy firms emit CO₂ emissions $e_{i,t}^e$ when they produce goods:

$$e_{j,t}^{e} = \underbrace{(1 - \mu_{j,t}^{n})}_{\text{Abatement efforts}} \varphi_{t}^{n} e_{j,t}^{n}$$
(6)

ENERGY FIRMS: EMISSIONS AND ABATEMENT INVESTMENT

• Energy firms emit CO₂ emissions $e_{i,t}^e$ when they produce goods:

$$e_{j,t}^{e} = \underbrace{(1 - \mu_{j,t}^{n})}_{\text{Abatement efforts}} \varphi_{t}^{n} e_{j,t}^{n}$$
(6)

Abatement technology is costly for firms and is assumed to be a fraction of their total production:

$$\underbrace{F(\mu_{j,t}^{e})}_{\text{vector}} = \theta_1 \mu_{j,t}^{e}^{\theta_2} \tag{7}$$

Convex cost function

ENERGY AND NON-ENERGY: PROFIT

where ϵ_t^{τ} is a carbon price shock driven by a Brownian motion B_t $(d\epsilon_t^{\tau} = \mu(\epsilon_t^{\tau})dt + \eta(\epsilon_t^{\tau})dB_t).$

ENERGY AND NON-ENERGY: PROFIT

where ϵ_t^{τ} is a carbon price shock driven by a Brownian motion B_t $(d\epsilon_t^{\tau} = \mu(\epsilon_t^{\tau})dt + \eta(\epsilon_t^{\tau})dB_t).$

► The non-energy firms' profit reads as:

$$\Pi_{j,t}^{F} = y_{j,t} - w_{t}^{y} l_{j,t}^{y} - i_{j,t}^{y}$$
(9)

Households

• The households choose consumption expenditures c_t :

$$\max_{\{c_t\}} E_0 \int_0^\infty \epsilon_t^B e^{-\rho t} u(C_t) dt$$

where $\rho \ge 0$ is the time discount factor and $u(C_t)$ is CRRA. ε_t^B is a preference shock driven by a Brownian motion B_t ($d\varepsilon_t^B = \mu(\varepsilon_t^B)dt + \eta(\varepsilon_t^B)dB_t$).

► The representative household budget constraint reads:

$$\dot{B^{G}}_{t} = r_{t}B^{G}_{t} + w^{y}_{t}L^{y}_{t} + w^{n}_{t}L^{n}_{t} + \sum_{s}\Pi^{s}_{t} + T_{t} - C_{t}$$

FISCAL AUTHORITIES

• The public authority sets an emissions cap as follows:

$$E_t = \epsilon_t^{Cap} \text{Carbon Cap}_t \tag{10}$$

where ϵ_t^{Cap} is a climate sentiment shock driven by a Brownian motion B_t $(d\epsilon_t^{Cap} = \mu(\epsilon_t^{Cap})dt + \eta(\epsilon_t^{Cap})dB_t).$

The government uses the environmental policy revenues $\tau_t E_t$ to finance exogenous expenditures G_t and transfers to households T_t :

$$G_t + T_t = \tau_t E_t \tag{11}$$

ESTIMATION STRATEGY AND DATA

- We estimate our model structural shocks, trends, and risk aversion, using Bayesian methods on monthly EU data from January 2013 to December 2018 corresponding to the third phase of the EU Emissions Trading System (ETS)
- ► We use date on carbon price, industrial production, consumption surveys, energy production, and CO₂ emissions
- We estimate our model's parameters using the Metropolis Hastings algorithm to sample from the distribution. We use four chains of 50,000 draws each.

ESTIMATED PARAMETERS

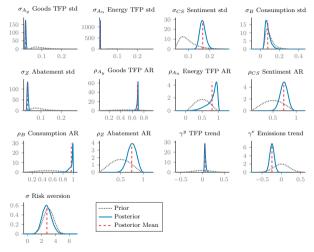
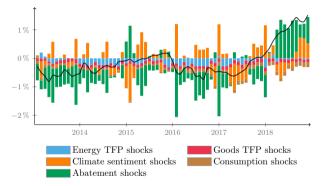


Figure: Priors, posteriors, and posterior means

CALIBRATION


Table: Calibration

Parameter	β	α_1	α2	α_n	δ	$\frac{g}{y}$	а	b	φ	η	ζ_1^o	ζ_2^o	θ_1	θ_2
Value	0.999	0.333	0.040	0.333	0.008	0.220	1.000	0.040	0.830	0.002	0.500	0.001	0.100	2.700

Table: Moments matching

Variable	Label	Model Steady-State	Model Conditional Mean	Data	Source
ETS Mean Carbon Price	$E(\tau)$	7.39	18.31	7.54	World Bank
Emission to Output Ratio	$E\left(\frac{E}{Y}\right)$	0.24	0.20	0.24	Authors' Calculations
Share of Energy in Output	$E\left(\frac{p^nY^n}{Y}\right)$	0.04	0.04	0.04	Authors' Calculations
Temperature	$E(T^o)$	1.00	1.00	1.00	NOAA
Cumulative Emission	E(X)	801	803	800	Copernicus (EC)

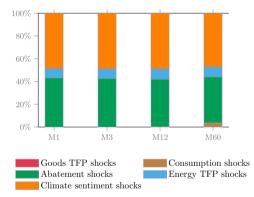

RESULTS 1A: UNCOVERING DRIVERS IN THE ETS FUTURES MARKET

Figure: ETS Futures Historical Decomposition

<u>Notes:</u> The figure shows the path of the ETS carbon price (black line) decomposed into various drivers over the estimated period (2013 – 2019).

Results 1B: Uncovering Drivers in the ETS Futures Market

Figure: ETS Futures Variance Decomposition

<u>Notes:</u> The figure shows the ETS price variance decomposition conditional on different horizons: one month, three months, one year, and five years. This is the theoretical variance decomposition of the carbon price, taking into account the estimated variances of shocks.

HOW IS THE ETS COMPARED TO THE SCC

- We proceed to compare the estimated carbon price with an optimal benchmark, which assumes that a social planner would set a tax to the social cost of carbon.
- To simulate the optimal scenario, we use the estimated parameters and shock series and replace our carbon price equation with the social cost of carbon.
- We also eliminate the climate sentiment shock since there is no uncertainty about the joint path of carbon price and emissions in this scenario.

RESULTS 2: ETS AND OPTIMAL POLICY

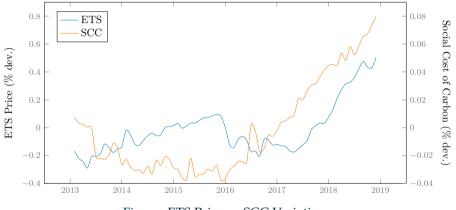


Figure: ETS Price vs SCC Variations

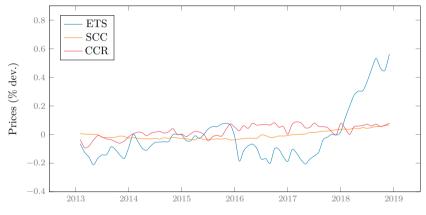
<u>Notes</u>: The figure shows the deviations of the estimated ETS price and the counterfactual SCC in percentage deviations from their respective steady states.

CARBON CAP RULES

- We propose a carbon cap rule that can be considered the equivalent of a Taylor rule for environmental policy.
- In our model, the de-trended carbon cap is no longer fixed and can deviate slightly from the value consistent with the Paris Agreement in the short run. The equation for the carbon cap rule becomes:

$$\operatorname{Cap}\operatorname{Level}_{t} = \overline{\operatorname{Cap}\operatorname{Level}} + \phi_{e} * 100(e_{t} - \overline{e}) + \phi_{z} * 100(z_{t} - \overline{z}),$$

where \bar{e} and \bar{z} are the de-trended steady-state emissions and abatement cost, respectively.


RESULTS 3A: CARBON CAP RULES (CCR)

	ETS Cap Policy	Social Cost of Carbon	Carbon Cap Rule
	Estimated	Optimal	$\phi_z = 13.11 \text{ and } \phi_e = .15$
	Column (1)	Column (2)	Column (3)
Welfare (% change w.r.t. SCC)	-1.74 %	0 %	-1.74 %
Welfare (Std. Dev.)	1.03 %	1.03 %	1.02 %
Emissions (Std. Dev.)	3.18 %	6.48~%	4.54 %
Abatement Cost (Std. Dev.)	19.13 %	11.88 %	11.94~%
Marginal Abatement Cost (Std. Dev.)	21.85 %	15.95 %	15.54~%
Carbon Price (in euros)	17.49	29.12	18.07
Carbon Price (Std. Dev.)	18.66 %	2.96 %	4.24 %

Table: Policy Scenarios Estimated Second Moments

<u>Notes</u>: The table reports various moments under a set of scenarios. The first column corresponds to the estimated model, the second column corresponds to the counterfactual optimal case, and the third column corresponds to the counterfactual carbon cap rule. The carbon cap rule is Cap Level_t = $\overline{\text{Cap Level}} + \phi_e * 100(e_t - \bar{e}) + \phi_z * 100(z_t - \bar{z})$.

RESULTS 3B: ETS, SCC, AND CCR VARIATION

Figure: ETS vs SCC vs CCR Variations

<u>Notes:</u> The figure shows the deviations of the estimated ETS price, the counterfactual SCC, and the counterfactual CCR in percentage deviations from their respective steady states.

MAIN TAKEAWAYS

1. This article provides a comprehensive analysis of the drivers of carbon pricing in the EU ETS market, using a macro-finance model

MAIN TAKEAWAYS

- 1. This article provides a comprehensive analysis of the drivers of carbon pricing in the EU ETS market, using a macro-finance model
- 2. Our results highlight that **abatement cost shocks**, **climate sentiment shocks** are the main factors driving carbon pricing

MAIN TAKEAWAYS

- 1. This article provides a comprehensive analysis of the drivers of carbon pricing in the EU ETS market, using a macro-finance model
- 2. Our results highlight that **abatement cost shocks**, **climate sentiment shocks** are the main factors driving carbon pricing
- 3. We also demonstrate that reducing price uncertainty can help close the gap with respect to the optimal policy

THANK YOU!