Is industrial decarbonization at odds with competitiveness?

An assessment of competition dynamics in two EU industries

Aliénor Cameron

Economix - Université Paris Nanterre Chaire Économie du Climat ADEME

International Conference on Ex-Post Evaluation of Emission Trading 20 June 2023

Industrial emissions

1/5th of EU emissions

Main instrument for industrial decarbonization

Industrial emissions covered Excluding power sector

- 4-

Energy-intensive sectors

Climate policies vs competitiveness?

Model

Introduction

000000000

If international partners do not share a comparable ambition to the EU, there is a risk of carbon leakage.

Conclusion

References

- European Commission, 2021

Appendix

EU ETS

- $\rightarrow\,$ Oldest and most stringent system in the world
- $\rightarrow\,$ Stringency set to increase

Climate policies vs competitiveness?

Results

Data

Introduction

000000000

If international partners do not share a comparable ambition to the EU, there is a risk of carbon leakage.

Conclusion

- European Commission, 2021

Appendix

EU ETS

- $\rightarrow\,$ Oldest and most stringent system in the world
- $\rightarrow\,$ Stringency set to increase

Leakage mitigation measures

- $\rightarrow\,$ Free allocations + Indirect cost compensation
- \rightarrow Soon: CBAM

References

Climate policies vs competitiveness?

Results

Data

Introduction

If international partners do not share a comparable ambition to the EU, there is a risk of carbon leakage.

Conclusion

- European Commission, 2021

Appendix

EU ETS

- $\rightarrow\,$ Oldest and most stringent system in the world
- $\rightarrow\,$ Stringency set to increase

Leakage mitigation measures

- \rightarrow Free allocations + Indirect cost compensation
- \rightarrow Soon: CBAM

References

 \Rightarrow Are these policies effective at inducing carbon abatement AND protecting competitiveness?

Measuring carbon leakage risk

Economic literature

Introduction

000000000

In the literature:

Model

Strand of	Seminal papers /	Method of	Leakage risk	Limitations
literature	Literature reviews	measurement	assessment	Limitations
Theoretical	Hoel (1991),	Came theory	High	No empirical
Theoretical	Markusen et al. (1993)	Game theory	i ligii	validation
Ex anto	Branger and Quirion (2014),	CCE models	Very dependent	Highly
LX-ante	Carbone and Rivers (2017)		on elasticities	aggregated
Ex post	Verde (2020),	Empirical	Low	No stringent
Ex-post	Joltreau and Sommerfeld (2019)	estimation	LOW	policies tested

Conclusion

References

 \rightarrow Is the difference between empirical estimates and ex-ante studies only caused by low prices? Method of allocation? Could market structure play a role?

Measuring carbon leakage risk

Data

Results

European Commission methodology

Model

Introduction

000000000

Based on simple indicators:

- \rightarrow trade intensity
- \rightarrow emission intensity
- $\rightarrow\,$ qualitative assessment for some threshold cases

▷ Third phase) (▷ Fourth phase

Literature finds EU measure **overstates** carbon leakage risk (Fischer & Fox, 2018; Fowlie & Reguant, 2018; Martin et al., 2014; Sato et al., 2015) References

Conclusion

References

Appendix

Evidence of **cost pass-through** (Cludius et al., 2020) and **weaker incentives** for carbon abatement because of free allocations (De Vivo & Marin, 2018).

Paper contributions:

- \rightarrow Proposes new empirical method to determine the **relevant market** in sectors at risk of carbon leakage
- $\rightarrow\,$ Estimates highly disaggregated substitution elasticities
- \rightarrow Country-level assessment of leakage risk

Application of **hypothetical monopolist test** for market delineation (SSNIP) (Werden, 2003)

Inputs:

- $\rightarrow\,$ Calculation of own- and cross-price elasticities based on monopolistic competition model
- $\rightarrow\,$ Gravity model for estimation of substitution elasticities (Yotov et al., 2016)
- \Rightarrow Consistent monopolistic competition micro framework

- \rightarrow Time: 2008-2018
- \rightarrow Products: Hydraulic cement, clinker, flat and long steel products
- \rightarrow Geography: World

- $\rightarrow\,$ Cement products are more substitutable between countries than steel products
- $\rightarrow\,$ Sub-products do not vary substantially in terms of their substitutability
- \rightarrow Hypothetical monopolist test results:
 - $\, \ast \,$ Steel \rightarrow mostly national markets

- \rightarrow *N* countries in the world
- $\rightarrow\,$ Two agents: upstream producer and downstream producer
- → Armington structure of international trade (country = upstream producer = variety of a good)
- $\rightarrow\,$ Common monopolistic competition micro foundation

Micro-founded market delineation method (Werden, 2003)

Intuition:

Micro-founded market delineation method (Werden, 2003)

Intuition:

Micro-founded market delineation method (Werden, 2003)

Intuition:

Micro-founded market delineation method (Werden, 2003)

Intuition:

Micro-founded market delineation method (Werden, 2003)

Intuition:

Profit after 5% price increase > Profit before 5% price increase

Profit after 5% price increase > Profit before 5% price increase

 \iff Starting country *h*'s own-price elasticity < critical elasticity

Hypothetical monopolist test

Profit after 5% price increase > Profit before 5% price increase

 \iff Starting country *h*'s own-price elasticity < critical elasticity

$$\Longleftrightarrow -\varepsilon_{hh} < \frac{1}{\mu_h + x} + \sum_{n \neq h} \frac{\mu_n}{\mu_h + x} \frac{\nu_n}{\nu_h} \varepsilon_{nh}$$

 ε_{hh} : Starting country h's own-price elasticity

 $\varepsilon_{hn}:$ Cross-price elasticity between starting country's good h and substitutes $n\in\{1,...,N'\}$

- $\mu: \text{ Margin rate}$
- ν : Turnover

x: small but significant non-transitory price increase

Introduction 000000000	Model 000	Data ●0	Results 000000000	Conclusion	References	Appendix 000000000000000000000000000000000000
Data ne	eds					

Variable		Source	Details
Own- & cross-price elasticities	ε	Estimated from modified gravity model	
Margin rate	μ	Eurostat data	
Turnover	ν	Production data * estimated price data	
Price increase	х	Conventionally set at 5%	

 Introduction
 Model
 Data
 Results
 Conclusion
 References
 Appendix

 000000000
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Data sources

Type of data	Source	Time scope	Geo scope
International trade flows	CEPII's BACI database	2007 - 2020	World
Steel production	World Steel Association	2006 - 2017	World
Cement production	USGS Mineral Yearbook	2004 - 2017	World
Clinker production	Constructed from GCCA	2012 - 2018	World regions
Margin rates	Eurostat	2008 - 2020	Europe
Input-output table	WIOD	2016	World
Price data	Constructed from BACI	2007 - 2020	World

Introduction Model Oata Oo Pata Oo Conclusion References Appendix

Gravity model results

Table: PPML estimation

	Dependent variable:							
		Trade flow (value)						
	(1) (2) (3) (4)							
	Hydraulic cement Clinker Flat steel Lo							
Log distance	-4.005*** (0.278)	-4.252*** (0.628)	-2.004*** (0.082)	-2.694*** (0.117)				
Observations AIC BIC Likelihood	2424 57499635 57465968 -28749128	1150 41881771 41865445 -20940248	2166 381428235 381389852 -190713738	3024 197387610 197337925 -98693325				
Note [.]	*p<0.1·**p<0.0	5 [.] ***p<0.01						

Elasticities of substitution

Product	Elasticity
Hydraulic cement	4.33***
	(0.278)
Clinker	4.72***
	(0.628)
Flat steel products	3.018***
	(0.082)
Long steel products	3.585***
	(0.117)

Own-price elasticities

Model Data

Results

Conclusion References

Hypothetical monopolist test results

Taking Germany as base country

	Clinker	Hydraulic cement	Long steel	Flat steel
2008	[DEU, LUX]	[DEU, FRA, NLD]	[DEU]	[DEU]
2009	[DEU]	[DEU, FRA, NLD]	[DEU]	[DEU]
2010	[DEU]	[DEU, FRA, NLD]	[DEU]	[DEU]
2011	[DEU]	[DEU, FRA]	[DEU]	[DEU]
2012	[DEU, DNK, ESP]	[DEU, FRA]	[DEU]	[DEU]
2013	[DEU, ESP]	[DEU, FRA]	[DEU]	[DEU]
2014	[DEU]	[DEU, FRA]	[DEU]	[DEU]
2015	[DEU, CHE]	[DEU, FRA]	[DEU]	[DEU]
2016	[DEU]	[DEU, FRA]	[DEU]	[DEU]
2017	[DEU]	[DEU, FRA, POL]	[DEU]	[DEU]
2018	[DEU, TUN]	[DEU, FRA]	NaN	NaN

Results Conclusion

References

Hypothetical monopolist world results - clinker

Introduction

Model

Data

Clinker, 2018

Conclusion References Appendix

Hypothetical monopolist results - hydraulic

Results

Model

Data

Introduction

Hypothetical monopolist results - flat steel

Results

Model

Data

Introduction

Flat, 2017

Conclusion

References

Hypothetical monopolist results - long steel

Introduction

Model

Data

Results

Long, 2017

Conclusion

References

- ightarrow Earliest year available ightarrow
- ightarrow Random order of countries for iteration ightarrow
- ightarrow Monte Carlo simulation of margin rates ightarrow

Hypothetical monopolist intuitions

- $\rightarrow\,$ Why does the test (almost) always show the relevant market is national for long and flat steel products?
- ightarrow Margin rates are low so critical elasticity is high

critical elasticity =
$$\frac{1}{\mu_h + x} + \sum_{n \neq h} \frac{\mu_n}{\mu_h + x} \frac{\nu_n}{\nu_h} \varepsilon_{nh}$$

- $\rightarrow~{\sf Opposite}$ of cellophane fallacy
- ightarrow For hydraulic cement, relevant market is delineated intra-EU
- $\rightarrow\,$ For clinker, relevant market is delineated with extra-EU countries

- $\rightarrow\,$ Need to take market power into account
- $\rightarrow\,$ Cement products are more substitutable between countries than steel products
- $\rightarrow\,$ Sub-products do not vary substantially in terms of their substitutability
- \rightarrow Hypothetical monopolist test results (in current market conditions!):
 - » Steel \rightarrow mostly national markets
- $\rightarrow\,$ Could be an indication of specialization of products, or of existing market power

Introduction	Model	Data 00	Results 000000000	Conclusion ○●	References	Appendix 000000000000000000000000000000000000

Thank you for your attention!

Questions/comments? alienor.cameron@chaireeconomieduclimat.org

Conclusion Branger, F., & Quirion, P. (2014). Would border carbon adjustments prevent carbon leakage and heavy industry competitiveness losses? Insights from a meta-analysis of recent economic studies. Ecological Economics, 99, 29-39. Carbone, J. C., & Rivers, N. (2017). The Impacts of Unilateral Climate Policy on Competitiveness: Evidence From Computable General Equilibrium Models [Publisher: Oxford Academic]. Review of Environmental Economics and Policy, 11(1), 24-42.

References

Appendix

Model

Data

Results

Cludius, J., de Bruyn, S., Schumacher, K., & Vergeer, R. (2020). Ex-post investigation of cost pass-through in the EU ETS an analysis for six industry sectors. *Energy Economics*, 91. Commission, E. (2021). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: 'Fit for 55': Deilvering the EU's 2030 Climate Target on the way to climate neutrality.

roduction Model

References

De Vivo, N., & Marin, G. (2018). How neutral is the choice of the allocation mechanism in cap-and-trade schemes? Evidence from the EU-ETS [Number: 9]. Argomenti, (9), 21–44.
Fischer, C., & Fox, A. K. (2018). How Trade Sensitive Are Energy-Intensive Sectors? AEA Papers and Proceedings,

108, 130-135.

Fowlie, M., & Reguant, M. (2018). Challenges in the Measurement of Leakage Risk [Publisher: American Economic Association]. AEA Papers and Proceedings, 108, 124–129.

Hoel, M. (1991). Global environmental problems: The effects of unilateral actions taken by one country. *Journal of Environmental Economics and Management*, 20(1), 55–70.

Joltreau, E., & Sommerfeld, K. (2019). Why does emissions trading under the EU Emissions Trading System (ETS) not affect firms' competitiveness? Empirical findings from the literature. *Climate Policy*, *19*(4), 453–471.

Markusen, J. R., Morey, E. R., & Olewiler, N. D. (1993). Environmental Policy when Market Structure and Plant

Introduction I	Model 000	Data 00	Results 000000000	Conclusion	References	Appendix 000000000000000000000000000000000000
	Locati	ons Ar	e Endoger	ious. <i>Journ</i>	nal of Envi	ironmental
	Econo	mics a	nd Manag	ement, 24(1), 69–86	
Martin,	R., Mı	Jûls, N	1., de Prei	ix, L. B., &	2 Wagner,	U. J. (2014).
	Indust	ry Con	npensation	under Rel	ocation R	isk: A
	Firm-L	evel A	nalysis of	the EU En	nissions Tr	rading Scheme.
	Ameri	can Ec	conomic Re	eview, 104((8), 2482–	2508.
Sato, N	1., Neu	hoff, k	K., Graiche	n, V., Schi	umacher, I	K., &
	Matth	es, F.	(2015). Se	ctors Unde	er Scrutiny	v: Evaluation of
	Indicat	ors to	Assess the	e Risk of C	arbon Lea	akage in the UK
	and G	ermany	y. Environi	mental and	l Resource	Economics,
	60(1),	99-12	24.			
Verde,	S. F. (2	2020).	The Impa	ct of the E	u Emissio	ns Trading
	Systen	n on C	ompetitive	eness and (Carbon Lea	akage: The
	Econo	metric	Evidence	eprint:		
	https:/	//onlir	elibrary.wi	ley.com/do	pi/pdf/10.	1111/joes.12356].
	Journa	al of E	conomic S	urveys, 34(2), 320–3	43.

Werden, G. J. (2003). The 1982 merger guidelines and the ascent of the hypothetical monopolist paradigm [Publisher: American Bar Association]. Antitrust Law Journal, 71(1), 253–275.

Yotov, Y., Roberta, P., José-Antonio, M., & Mario, L. (2016). An Advanced Guide to Trade Policy Analysis: The Structural Gravity Model.

- $\rightarrow\,$ direct and indirect costs from implementation increase production costs by >5% AND trade intensity with non-EU countries $>\,10\%$ OR
- $\rightarrow\,$ direct and indirect costs > 30% $$\rm OR$$
- $\rightarrow\,$ trade intensity with non-EU countries > 30%

First level of assessment:

 $\rightarrow\,$ trade intensity * emissions intensity > 0.2

Second level of assessment:

- $\rightarrow\,$ if 0.15 < trade intensity * emission intensity < 0.2 $\rightarrow\,$ qualitative assessment
- ightarrow emission intensity > 1.5
- $\rightarrow\,$ free allocation calculated on basis of refineries benchmark
- $\rightarrow\,$ listed in EU ETS phase 3 carbon leakage list at 6-digit or 8-digit level

⊳ Back

Price elasticities

Step 1: Gravity model (1)

Modified version of the standard gravity model (Yotov et al., 2016):

- ightarrow Maximizing agent is downstream producer
- \rightarrow Armington structure of trade
- \rightarrow Nested production function, with σ the CES elasticity of substitution:

$$Y_j = L_j^{\alpha} M_j^{1-\alpha} \tag{1}$$

$$M_{j} \equiv \left(\sum_{i=1}^{N} m_{ij}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$
(2)

 \rightarrow Demand for each variety

$$m_{ij}^* = p_{ij}^{-\sigma} M_j^* \left(\sum_{i=1}^N p_{ij}^{1-\sigma} \right)^{\frac{\sigma}{1-\sigma}}$$
(3)

Price elasticities Step 1: Gravity model (2)

 \rightarrow lceberg transport costs are defined as:

$$t_{ij} = \delta_j dist_{ij} \exp(\theta_j D_{ij}) \tag{4}$$

With δ_j j's distance elasticity, $dist_{ij}$ the geographical distance between i and j and D_{ij} a vector of cultural distance variables \rightarrow Gravity model used for estimation:

$$\log X_{ij,t} = -\log O_t + (1 - \sigma) \log dist_{ij,t} + \theta_j (1 - \sigma) D_{ij} + \pi_{i,t} + \chi_{j,t} + \epsilon_{ij,t}$$
(5)

With $X_{ij,t}$ trade flows from *i* to *j*, O_t gross world production, and $\pi_{i,t}$ and $\chi_{j,t}$ exporter-year and importer-year fixed effects, respectively.

Price elasticities Step 2: Computing own- and cross-price elasticities

These elasticities are derived from a monopolistic competition model (Yotov et al., 2016).

$$\varepsilon_{jj} = \frac{\partial m_{jj}}{\partial p_{jj}} \frac{p_{jj}}{m_{jj}} \quad \text{and} \quad \varepsilon_{ij} = \frac{\partial m_{ij}}{\partial p_{jj}} \frac{p_{jj}}{m_{ij}}$$

$$\varepsilon_{jj} = (-\sigma) + (\sigma - \alpha) \frac{p_{jj}^{1-\sigma}}{\sum_{i=1}^{N} p_{ij}^{1-\sigma}} \tag{6}$$

$$\varepsilon_{ij} = (\sigma - \alpha) \frac{p_{jj}^{1-\sigma}}{\sum_{i=1}^{N} p_{ij}^{1-\sigma}} \tag{7}$$

Gravity model results

Sensitivity to standard gravity model control variables

Table: PPML gravity model

		Dependent variable:				
		Trade flow	(value)			
	(1)	(2)	(3)	(4)		
	Hydraulic cement	Clinker	Flat steel	Long steel		
Log distance	-3.333***	-3.715***	-2.018***	-2.585***		
	(0.130)	(0.069)	(0.073)	(0.112)		
Contiguity	-0.802***	-0.798	-0.383*	-0.236		
	(0.247)	(0.656)	(0.217)	(0.239)		
Common language	-1.606***	-1.843*	-1.139**	-1.774***		
	(0.459)	(1.014)	(0.470)	(0.511)		
Colonial ties	0.511	2.497	1.599***	0.680		
	(0.603)	(1.518)	(0.191)	(0.511)		
Regional trade agreement	-1.807***	-3.732***	-0.492***	-0.398		
	(0.217)	(0.481)	(0.168)	(0.243)		
Observations	2424	1150	2166	3024		
AIC	30700578	9748059	302949737	176139867		
BIC	30666934	9731753	302911377	176090207		
Likelihood	-15349595	-4873387	-151474485	-88069450		
Note:	*p<0.1: **p<0.05	****p<0.01				

⊳ Back

 \Rightarrow Overall, tends to show EU's measure of carbon leakage overstates risk of carbon leakage

- \rightarrow Fischer and Fox (2018): Econometric estimates of parameters related to trade sensitivity. Highlight aggregation bias.
- → Fowlie and Reguant (2018): Simplified model to show challenges of measuring carbon leakage. Note the need for better modeling of foreign responses to carbon pricing.
- \rightarrow Martin et al. (2014) and Sato et al. (2015): Interviews with industry representatives + micro data. Find most firms were overcompensated for carbon leakage risk.

Price data

Domestic price = weighted average of export prices

Japan - flat steel product unit prices (EUR/t)

USA - long steel product unit prices(EUR/t)

	plat	long
CHN	0.834219	0.438151
EU	0.906324	0.924162
JPN	0.943256	0.888726
USA	0.803326	0.653474
SEA	/	0.170657
IND	0.876998	/
RUS	0.724492	0.929019

Correlation coefficients with OECD data

Clinker production

clinker production = cement production * clinker ratio - clinker imports + clinker exports

Figure: Egypt

Figure: Poland

Own-price elasticities (1/2)

country	clinker	flat	hydraulic	long
AUS	-7.72398	-3.84155	-0.46518	-9.39003
AUT	-8.10898	-6.28505	-5.04302	-4.37974
BEL	-5.23284	-2.81728	-5.01203	
BGR	-14.2618	-1.49351	-6.0801	-4.45267
BRA	-0.00095	-3.45466	-4.10429	-9.40446
CAN	-11.0213	-1.91681	-8.76299	-9.39594
CHE	-0.79607		-11.3005	
CHN	-2.76708		-1.45569	-9.57233
CYP	-2.54045		-3.26306	
CZE	-1.88145	-3.58095	-8.71323	-9.42988
DEU	-8.30985	-6.27714	-10.8579	-9.41489
DNK	-5.66204		-4.22345	
ESP	-12.7406	-6.27565	-2.38873	-9.41313
EST	-6.73307		-15.0383	
FIN	-0.12403	-6.26373	-0.67424	-1.48296
FRA	-9.64694	-6.24765	-0.97347	-9.38004
GBR	-1.03414	-2.49108	-0.38593	-3.54677
GRC	-14.5681		-12.862	-9.39038
HRV	-12.1379		-1.67239	-9.39294
HUN	-4.23902	-3.876	-2.82989	-3.81304

Own-price elasticities (2/2)

country	clinker	flat	hydraulic	long
IDN	-7.81413	-2.0199	-15.1549	-9.40027
IND	-3.58964		-6.14408	-9.53301
IRL	-7.12912		-6.0571	
ITA	-8.51074	-6.27572	-14.8059	-6.17689
JPN	-5.56202		-15.1585	-9.47811
KOR	-15.8306		-4.73681	-9.52975
LTU	-1.39687		-8.32308	
LUX	-5.67954		-10.8813	-9.37749
LVA	-16.4184		-6.49826	-9.38171
MEX	-16.3552	-0.91131	-15.0636	-9.41381
NLD	-0.68172	-3.30304	-1.44837	
NOR	-1.8E-06		-11.0788	-5.99497
POL	-2.5143	-3.61162	-0.43233	-4.293
PRT	-16.417		-14.092	-6.38249
ROU	-1.48768	-6.2869	-2.28163	-9.42644
RUS	-7.28328	-3.47566	-4.41773	-9.47617
SVK	-9.19558	-6.2731	-8.43001	
SVN	-2.73549	-0.90588	-7.53897	-2.60286
SWE	-16.3953	-6.26606	-8.45702	-9.40179
TUR	-0.84192		-14.7238	-9.42881
USA	-2.64375		-4.19979	-9.38363

Results - earliest year (1/4)Clinker

Results - earliest year (2/4)Hydraulic cement

Results - earliest year (3/4)Flat steel

Results - earliest year (4/4)Long steel

⊳ Back

Random order of iteration (1/4)_{Clinker}

Random order of iteration (2/4) Hydraulic cement

Random order of iteration (3/4)Flat steel

flat, 2017

Random order of iteration (4/4) Long steel

long, 2017

Monte Carlo simulation for margin rates (1/4)_{Clinker}

Monte Carlo simulation for margin rates (2/4)Hydraulic cement

Monte Carlo simulation for margin rates (3/4)Flat steel

flat, 2017

Monte Carlo simulation for margin rates (4/4)Long steel

long, 2017

