

Policy choice, timing and stringency and the direction of innovation

Elena Verdolini, PhD.

University of Brescia RFF-CMCC European Institute on Economics and the Environment, Euro-Mediterranean Center on Climate Change

FSR CLIMATE ANNUAL CONFERENCE 2022 December 2nd, 2022

Disruptive Digitalization For Decarbonization

This work has received funding from European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 853487).

<u>Outline</u>

- The paper in a nutshell
- Motivation
- Competing models of the direction of technical change
- Econometric implementation and data
- Empirical results
- Simulation and discussion

The paper in a nutshell

In a nutshell

- <u>What</u>: We test whether and how the effectiveness of environmental policy instruments in promoting a radical technology depends on the level of existing "competencies"-i.e. the knowledge stocks
- <u>How</u>: We develop three alternative models and choose the one that best fits the data
- <u>Results</u>: Competencies mediate policy effectiveness in a non-linear way, giving rise to different policy effectiveness regimes.
- <u>Relevance</u>: the effectiveness of a given policy instrument depends on the level of competences, the timing of policy choice and policy stringency

 \rightarrow If you choose the wrong policy instrument, or time it wrongly, innovation benefits related with policies will not accrue

Motivation

Motivation

<u>The idea is not new:</u> appropriate policy choice is contingent on the stage of technological development of a country

- Rodrick (2005) on appropriate growth strategy
- Rich literature explores poverty traps and multiple equilibria as a function of policies affecting accumulation of physical or human capital and technologies)
- In Acemoglu et al. (2006) the choice of the appropriate policy depends on the distance to the technological frontier

<u>But we give it a twist</u>: Policy effectiveness in promoting innovation, and directing it towards a radical innovation rather than an incremental one, is not independent from the relative specialization of a country in these two technological domains. Furthermore, there is not reason to exclude that the mediating role of specialization is non linear.

Why giving it a twist? BECAUSE WE NEED TO PROMOTE RENEWABLE ENERGY INNOVATION

Motivation

(based on IPCC-assessed scenarios)

Competing models of the direction of technical change

Theoretical framework

1st building block: Knowledge production function

$$k = A K^{\beta_K} \mathbf{C}^{\mathbf{B}_{\mathbf{C}}} e^{\mathbf{B}_{\mathbf{P}} \times \mathbf{P} + v}$$

2nd building block: Heterogeneity in research domains

$$k_d = A_d K_d^{\beta_K} {}^{_d} K_{-d}^{\beta_{K-d}} \mathbf{C}^{\mathbf{B}_{\mathbf{d},\mathbf{C}}} e^{\mathbf{B}_{\mathbf{d},\mathbf{P}} \times \mathbf{P} + \upsilon_d}$$

In the context of radical and incremental energy technologies:

$$\begin{cases} k_g = A_g K_g^{\beta_{K_g}} K_{-g}^{\beta_{K_{-g}}} \mathbf{C}^{\mathbf{B}_{\mathbf{g},\mathbf{C}}} e^{\mathbf{B}_{\mathbf{g},\mathbf{P}} \times \mathbf{P} + \upsilon_g} \\ k_f = A_f K_f^{\beta_{K_f}} K_{-f}^{\beta_{K_{-f}}} \mathbf{C}^{\mathbf{B}_{\mathbf{f},\mathbf{C}}} e^{\mathbf{B}_{\mathbf{f},\mathbf{P}} \times \mathbf{P} + \upsilon_f} \end{cases}$$

Three alternative models

Linear

$$K_{-(g+f)} = K - K_g - K_f$$

$$\ln rk = \ln rA + \beta_{K_g} \ln rK - \beta_{Kf'} \ln K_f + \beta_{K_{-(g+f)}} \ln K_{-(g+f)} + \mathbf{B}_{\mathbf{C}} \ln \mathbf{C} + \mathbf{B}_{\mathbf{P}} \mathbf{P} + \epsilon.$$

$$K_{-(g+f)} = K - K_g - K_f$$

$$\beta_{K_f} = \beta_{K_g} + \beta_{K_{f'}}$$

$$\beta_{K_f} > \beta_{K_g} (\text{resp. } \beta_{K_f} < \beta_{K_g})$$
Interaction

$$\ln rk = \ln rA + \beta_{K_g} \ln rK + \mathbf{B}_{\mathbf{P}} \mathbf{P} + \mathbf{B}_{\mathbf{K}_g, \mathbf{P}} (\ln rK \times \mathbf{P})$$

$$- \beta_{Kf'} \ln K_f + \beta_{K_{-(g+f)}} \ln K_{-(g+f)} + \mathbf{B}_{\mathbf{C}} \ln \mathbf{C} + \epsilon.$$

$$\partial \ln rk / \partial \ln \mathbf{P} = \mathbf{B}_{\mathbf{P}} + \mathbf{B}_{\mathbf{K}_g, \mathbf{P}} \times \ln rK$$

 $rk = k_g/k_f$ $\mathbf{B}_{\mathbf{P}} = \mathbf{B}_{\mathbf{g},\mathbf{P}} - \mathbf{B}_{\mathbf{f},\mathbf{P}}$

 $K_{-q} \simeq K_{-f} \simeq K_{-(q+f)}$

Threshold

 $\ln rk = \ln rA + \beta_{K_g} \ln rK + \mathbf{B_{1P}P} \times \mathbf{I_1}(\gamma_1, \gamma_2) + \mathbf{B_{2P}P} \times \mathbf{I_2}(\gamma_1, \gamma_2) + \mathbf{B_{3P}P} \times \mathbf{I_3}(\gamma_1, \gamma_2)$

 $-\beta_{Kf'} \ln K_f + \beta_{K_{-(g+f)}} \ln K_{-(g+f)} + \mathbf{B}_{\mathbf{C}} \ln \mathbf{C} + \epsilon,$

Two demand-pull policy instruments

<u>Command-and-control</u>: Impose limits on the level of pollution of requirements

- Limits on emissions
- Green certificates

<u>Market-based</u>: impose an implicit or explicit price on emissions

- Carbon-tax
- Emission trading scheme

Latter preferred by economic theory on efficiency grounds (static vs dynamic) But: no strong empirical evidence, criticism by social scientists

\rightarrow WE SPLIT THE POLICY VECTOR IN TWO

Econometric implementation and data

Econometric implementation

Challenges, which we address in the analysis:

- 1. (a) Accounting for <u>unobserved heterogeneity</u> in the context of slowly changing policy variables and (b) <u>endogeneity</u> of the policy variables: *control function and IV*
- 2. Implementing an empirical strategy to <u>search for thresholds effects</u>: *Hansen's threshold method*
- 3. Developing a <u>model selection procedure</u> to compare the performance of different models: *R-squared, Vuong's 2LR statistics on overlapping models, Akaike information criterion (AIC) with a correction for small samples (AICC)*

Data

- Econometric analysis: balanced panel of 33 countries, 1990-2015
- <u>Innovation</u>: Patent data from PATSTAT, using classification in renewable and efficient fossil as standard in the field
- <u>Threshold variable</u>: ratio of K stocks (perpetual inventory method)
- <u>Policy indexes</u>: EPS index for MB and C&C (instrumented via a shift-share approach) IV approach to account for endogeneity
 - Reverse causality: policy response depends positively on present and future competence of the country (\uparrow)
 - Measurement error in the policy variables (\downarrow)
 - Omitted variable bias (fossil subsidies) (\downarrow)
- <u>Standard controls</u> in the literature (el. consumption p/c, el. imp. & exp. shares, human capital index, GDP, pop)

Empirical results

Results		Linear $1P$ Eq.(4) (1)	$ \begin{array}{c} \text{Linear } 2P \\ \text{Eq.}(4) \\ (2) \end{array} $	Interaction Eq.(5) (3)		Threshold Eq.(7) (4)
Two discontinuities → three regimes (47 th ,89 th)	$\ln r K_{g/f,t-1}$ $\ln K_{f,t-1}$ $\ln K_{-(f+g),t-1}$	$\begin{array}{c} 0.400^{***} \\ (0.122) \\ 0.003 \\ (0.164) \\ 0.144 \\ (0.111) \end{array}$	$\begin{array}{c} 0.411^{***} \\ (0.116) \\ -0.046 \\ (0.120) \\ 0.139 \\ (0.095) \end{array}$	$\begin{array}{c} 0.225^{**} \\ (0.114) \\ -0.061 \\ (0.118) \\ 0.172^{*} \\ (0.092) \end{array}$	$\ln r K_{g/f,t-1}$ $\ln K_{f,t-1}$ $\ln K_{-(f+g),t-1}$	$\begin{array}{c} 0.258^{**} \\ (0.108) \\ -0.080 \\ (0.125) \\ 0.176^{*} \\ (0.095) \end{array}$
MB instrument effective only in strengthening current specialization, consolidate comparative advantage	ALL policies MB policies $MB \times \ln rK_{g/f,t-1}$ CC policies $CC \times \ln rK_{g/f,t-1}$	0.158 (1.999)	$\begin{array}{c} 0.129 \\ (0.391) \end{array}$ 1.161** $(0.510) \end{array}$	$\begin{array}{c} -1.408^{*}\\ (0.735)\\ 0.837^{*}\\ (0.492)\\ 0.816\\ (0.645)\\ 0.202\\ (0.353)\end{array}$	$\begin{split} MB \times \mathbf{I}(\ln r K_{g/f,t-1} &\leq \hat{\gamma}_1^r) \\ MB \times \mathbf{I}(\hat{\gamma}_1^r < \ln r K_{g/f,t-1} \leq \hat{\gamma}_2) \\ MB \times \mathbf{I}(\ln r K_{g/f,t-1} > \hat{\gamma}_2) \\ CC \times \mathbf{I}(\ln r K_{g/f,t-1} \leq \hat{\gamma}_1^r) \\ CC \times \mathbf{I}(\hat{\gamma}_1^r < \ln r K_{g/f,t-1} \leq \hat{\gamma}_2) \end{split}$	-0.692 (0.576) -0.021 (0.506) 1.680* (0.947) 1.130** (0.499) 1.371** (0.628)
<i>Third regimes</i> : top 11 percent	$\begin{array}{c} F\text{-stat IV } ALL \\ F\text{-stat IV } MB \\ F\text{-stat IV } CC \end{array}$	70.51	45.73 65.94	45.73 65.94	$\begin{array}{c} CC \times \mathbf{I}(\ln r K_{g/f,t-1} > \hat{\gamma}_2) \\ \\ \hline F\text{-stat IV } ALL \\ F\text{-stat IV } MB \\ F\text{-stat IV } CC \end{array}$	$ \begin{array}{r} 0.609 \\ (0.789) \\ 45.73 \\ 65.94 \end{array} $

Simulation

Simulation

- BLACK: reproduces observed
- GREY: if policies had been introduced with observed stringency but correct timing
- RED: if policies had been introduced with maximum stringency AND correct timing

In a nutshell

- <u>What</u>: We test whether and how the effectiveness of environmental policy instruments in promoting a radical technology depends on the level of existing "competencies"-i.e. the knowledge stocks
- <u>How</u>: We develop three alternative models and choose the one that best fits the data
- <u>Results</u>: Competencies mediate policy effectiveness in a non-linear way, giving rise to different policy effectiveness regimes.
- <u>Relevance</u>: the effectiveness of a given policy instrument depends on the level of competences, the timing of policy choice and policy stringency

 \rightarrow If you choose the wrong policy instrument, or time it wrongly, innovation benefits related with policies will not accrue

Thank you.

Elena Verdolini elena.verdolini @unibs.it

This work has received funding from European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 853487).

Results

	$\hat{\gamma}_1^r$	$\hat{\gamma}_2$	<u> </u>
Threshold percentile Threshold value for $\ln r K_{g/f,t-1}$ 95 % CI for $\ln r K_{g/f,t-1}$ 90 % CI for $\ln r K_{g/f,t-1}$ F-statistics P-value	$\begin{array}{c} 47\\ 1.292\\ [0.929,\ 1.336]\\ [1.219,\ 1.336]\\ 25.260\\ 0.001\end{array}$	89 2.198 [2.161,NA] [2.147,NA] 21.430 0.010	$\begin{array}{c} 32 \\ 1.033 \\ [.457, 1.154] \\ [.491, 1.120] \\ 10.140 \\ 0.126 \end{array}$

Table A1: First Stage Tobit Regressions						
	(1)	(2)	(3)			
	ALL	MB	CC			
Pre-sample mean	0.061*** (0.018)	0.086^{***} (0.025)	0.057^{**} (0.023)			
$\ln r K_{g/f,t-1}$	$0.013 \\ (0.011)$	$\begin{array}{c} 0.147^{***} \\ (0.019) \end{array}$	-0.041*** (0.016)			
$\ln K_{f,t-1}$	$\frac{0.033^{**}}{(0.013)}$	0.158^{***} (0.025)	-0.022 (0.018)			
$\ln K_{-(g+f),t-1}$	-0.023** (0.010)	-0.129^{***} (0.019)	0.024^{*} (0.014)			
IV _{ALL}	0.880*** (0.070)					
IV_{MB}		$\begin{array}{c} 1.441^{***} \\ (0.175) \end{array}$	$0.063 \\ (0.140)$			
IV_{CC}		-0.230** (0.109)	0.912^{***} (0.078)			
Control variables	Yes	Yes	Yes			
Observations	759	759	759			
Observations left censored	85	280	132			
Observations right censored	0	1	8			
F-stat IV	70.51	45.73	65.94			

Results