Introduction	Literature O	Data 00	Methodology ○	Results 00	Conclusion	References	Appendix 000000000000

Firms in the EU ETS: a categorisation based on transaction behaviour

Raude Marie

EconomiX, Paris Nanterre Unitversity & Climate Economics Chair (CEC)

December 2, 2022

Introduction ●○	Literature O	Data 00	Methodology ○	Results 00	Conclusion	References	Appendix 000000000000
Context							

The European Union Emission Trading Scheme (EU ETS):

- Regulates the emissions of actors from the industrial, manufacturing and energy sectors. Also covers domestic aviation.
 - \sim 13000 regulated sites,

 \sim 40% of the EU's GHG emissions

• Cap and trade system

EU ETS allowance price evolution

Introduction 0	Literature O	Data 00	Methodology 0	Results 00	Conclusion	References	Appendix 000000000000
с							

Context

Source: ICE, EEX, BloombergNEF. Note: Data is from Commitment of traders (CoT) database.

```
Investment funds' net position
(2018-2021)<sup>1</sup>
```

Potential detrimental role played by purely financial actors \rightarrow Report on the derivatives market activity (ESMA, 2022), EU discussions on banning financial actors

What are the different categories of actors in the EU ETS ?

- Summarise 2018 transaction behaviour based on network analysis
- Rely on clustering to deduct a categorisation of actors according to their transaction behaviour

Source: ERCST, BloombergNEF, the Wegener Center and Ecoact, 2022, Quemin and Pahle, 2021

Introduction	Literature ●	Data 00	Methodology ○	Results	Conclusion	References	Appendix 000000000000
Literatu	ire						

Empirical analysis exploiting transaction data

Descriptive analysis	Trotignon and Delbosc, 2008, Martino and Trotignon, 2013,				
Descriptive analysis	Ellerman and Trotignon, 2009, Lausen et al., 2022				
Participation drivers	Zaklan, 2013, Jaraitė et al., 2013, Baudry et al., 2021				
Farticipation unvers	Hintermann and Ludwig, 2022, Abrell et al., 2021				
Actor types	Betz and Schmidt, 2016, Balietti, 2016,				
Actor types	Cludius and Betz, 2020				
Market structure and properties	Borghesi and Flori, 2018, Flori et al., 2022,				
Market structure and properties	Karpf et al., 2018, Wang et al., 2020				

Contribution:

- mapping of the 2018 transaction network at the national firm level
- ② categorisation of firms based on their network properties

Introduction	Literature 0	Data ●0	Methodology O	Results	Conclusion	References	Appendix 000000000000
Data us	~ d						

Data used

Data

Transaction data Firm level ETS data Firm data

Information (Source)

Account level data (EÚTL database, Abrell, 2022) Match between the account holders and the companies (JRC, 2022) Ownership structure, NACE code (Bureau van Dijk ORBIS database)

Data transformation: administrative transfers removal, inter-firm and intra-firm transfer identification, auctions (Appendix).

Introduction	Literature O	Data ○●	Methodology O	Results 00	Conclusion	References	Appendix 000000000000

The ETS network

Transaction network, 2018 (Betweenness centrality) (Appendix: visualisation with other indicators, Auction network)

Introduction	Literature 0	Data 00	Methodology ●	Results 00	Conclusion	References	Appendix 000000000000

Methodology

K-means clustering (Hartigan-Wong algorithm, 1979)

$$Min \sum_{k=1}^{k} W(C_k) = \sum_{k=1}^{k} \sum_{x_i \in C_k} (x_i - \mu_k)^2$$

W, the within cluster variation

 C_k , cluster k

x, a data point belonging to cluster k

 $\mu_{\textit{k}}$, mean value of the points assigned to the cluster k

Cluster variables:

- In/Out Degree
- Weighted In/Out Strength
- Centrality measures (Betweenness, Eigenvector, Harmonic closeness, PageRank) (Appendix)

(for transactions in auctions, in the secondary market and intra-firm transfers).

Introduction	Literature 0	Data 00	Methodology ○	Results ●0	Conclusion	References	Appendix 000000000000
Firm clu	ustering						

Variable reduction using PCA:

- 58% of the variance is explained by the first two eigenvalues
- quality of representation and variable contribution (Appendix)

Cluster overview:

- 3 clusters of sizes 4378, 435 and 16
- Cluster 3: some financial and energy firms appear together
- Cluster 1: an important share of the regulated firms

Robustness: 2,3 and 4 clusters results, and divisive analysis clustering is also carried

out. (Appendix)

Cluster center characteristics:

- Cluster 3 stands out: upper tail of the distribution for all indicators
- Differences between cluster cluster 1 and cluster 2: harmonic closeness centrality, participation frequency in auctions and in intra-firm transaction.

(Appendix)

Mapping of the 2018 EU ETS firm transaction network \rightarrow revealed a fragmented network, and the intermediary role played by a handful of firms

Clustering based on network measures

 \rightarrow Some financial actors appear to behave differently than others

 \rightarrow Some energy companies have also been identified in this outlier category

Next steps:

• Explain the determinants of a firm belonging to a specific group - Latent profile analysis What explains the different transaction behaviour profiles in the EU ETS? (Appendix)

Introduction	Literature	Data	Methodology	Results	Conclusion	References	Appendix
00	O	00	○	00	○●		000000000000

Thank you for your time and attention ! marie.raude@chaireeconomieduclimat.org

Intro 00	duction	Literature 0	Data 00	Methodology 0	Results 00	Conclusion	References	Appendix 000000000000
Re	eferenc	ces I						

- Abrell, J., Cludius, J., Lehmann, S., Schleich, J., & Betz, R. (2021). Corporate emissions-trading behaviour during the first decade of the eu ets. *Environmental and Resource Economics*, 1–37.
- Balietti, A. C. (2016). Trader types and volatility of emission allowance prices. evidence from eu ets phase i. *Energy Policy*, *98*, 607–620.
- Baudry, M., Faure, A., & Quemin, S. (2021). Emissions trading with transaction costs. *Journal of Environmental Economics* and Management, 108, 102468.
- Betz, R. A., & Schmidt, T. S. (2016). Transfer patterns in phase i of the eu emissions trading system: A first reality check based on cluster analysis. *Climate Policy*, 16(4), 474–495.

In [.]	troduction	Literature 0	Data 00	Methodology ○	Results 00	Conclusion	References	Appendix 000000000000
F	Reference	ces II						
	Borgh	nesi, S., & and ev 602–63	Flori, olution	A. (2018). of the eu e	Eu ets ets netw	facets in t ork. <i>Energ</i>	he net: Sti y econom	ructure ics, 75,

- Cludius, J., & Betz, R. (2020). The role of banks in eu emissions trading. *The Energy Journal*, *41*(2).
- Ellerman, A. D., & Trotignon, R. (2009). Cross border trading and borrowing in the eu ets. *The Energy Journal*, 30(Special lssue# 2).
- Flori, A., Borghesi, S., & Marin, G. (2022). Network centrality and the environmental-financial performance nexus of eu ets firms. *Working Paper*.
- Hintermann, B., & Ludwig, M. (2022). Home country bias in international emissions trading: Evidence from the eu ets. *Resource and Energy Economics*, 101336.

Introduction 00	Literature 0	Data 00	Methodology ○	Results 00	Conclusion	References	Appendix 000000000000
Reference	ces III						

Jaraitė, J., Jong, T., Kažukauskas, A., Zaklan, A., & Zeitlberger, A. (2013). Matching eu ets accounts to historical parent companies a technical note. European University Institute, Florence. Retrieved June. 18, 2014. Karpf, A., Mandel, A., & Battiston, S. (2018). Price and network dynamics in the european carbon market. Journal of Economic Behavior & Organization, 153, 103–122. Lausen, J., Glock, D., Geres, R., Lischker, S., Ferdinant, M., & Mihai, A. (2022). Trading activities and strateges in the european carbon market. Umwelt Bundesamt. Martino, V., & Trotignon, R. (2013). Back to the future: A comprehensive analysis of carbon transactions in phase 1 of the eu ets.

Introduction	Literature O	Data 00	Methodology 0	Results 00	Conclusion	References	Appendix 000000000000
Reference	ces IV						

- Quemin, S., & Pahle, M. (2021). Financials threaten to undermine the functioning of emissions markets. *Available at SSRN 3985079*.
 Trotignon, R., & Delbosc, A. (2008). Allowance trading patterns during the eu ets trial period: What does the citl reveal. *Climate report*, *13*, 1–36.
 Wang, J., Liu, Y., Fan, Y., & Guo, J. (2020). The impact of industry on european union emissions trading market—from network perspective. *Energies*, *13*(21), 5642.
 Zaklan, A. (2012). Why do amittana trada caphon parmits?
 - Zaklan, A. (2013). Why do emitters trade carbon permits? firm-level evidence from the european emission trading scheme.

Introduction	Literature O	Data 00	Methodology ○	Results	Conclusion	References	Appendix ●00000000000
Append	ix I						

Auctioned allowances distribution

The details of the methodology can be found in the Climat & Débat, 2022 (p.13-14).

Introduction	Literature 0	Data 00	Methodology ○	Results 00	Conclusion	References	Appendix o●oooooooooo
Append	lix II						

EU ETS firm auction transactions

The network is mapped by applying the Yifan Hu Proportional algorithm on Gephi.

IntroductionLiteratureDataMethodologyResultsConclusionReferences0000000000000000	Appendix 00●000000000
--	--------------------------

Appendix II: weighted degree

Appendix II: eigenvector centrality

Transaction network, 2018 (Eigenvector centrality)

Introduction Literature Data Methodology Results Conclusion References	Appendix 0000●0000000
--	--------------------------

Appendix II: pageRank

Transaction network, 2018 (PageRank)

Introduction	Literature 0	Data 00	Methodology O	Results	Conclusion	References	Appendix 00000●000000
--------------	-----------------	------------	------------------	---------	------------	------------	--------------------------

Appendix III: Network metrics

Indicator	Definition
	Local centrality measure indicating the connectedness of the firm.
	It counts the number of other firms that are directly connected to a firm,
In /Out Degree controlity	over the maximum degree that the firm can have: $C_{deg}(u) = \frac{d_u}{n-1}$,
In/Out Degree centrality	where d_u is the number of nodes that are connected to the node u and n
	is the total number of vertices in the network. As the transaction network is directed,
	In (purchase) and Out (sales) degree is distinguished.
Writhted In (Out Store ath	This indicator computes the weighted degree of a node.
weighted in/Out Strength	$s_i^{in} = \sum_{j=1}^N w_{ji}$ and $s_i^{out} = \sum_{j=1}^N w_{jj}$
	Measures the centrality of a firm by looking at its role as an intermediator.
	The betweenness centrality of a node u is thus the number of shortest paths between
	a pair of nodes s and t on which one can find node u relative to the number
Betweenness centrality (Freeman 1979.)	of all shortest paths between s and t summed over all pairs of vertices.
,	If $\sigma_{s,t}$ is the total number of paths between nodes s and t and
	$\sigma_{s,t}(u)$ is the number of paths between these two vertices passing
	through u, betweenness centrality is defined as: $C_{btw}(u) = \sum_{s,t \in V} \frac{\sigma_{s,t}(u)}{\sigma_{s,t}}$
	On top of considering the number of links a firm has, this indicator also considers
	the centrality of the firm's neighbour. If A is the adjacency matrix of the network
	N where its elements $a_{i,j} \in 0, 1$ indicate the presence of a link
Eigenvector centrality (Bonacich 1087)	(0 no link; 1 link) between two nodes i and j , and $M(i)$ is the set of neighbors
Elgenvector centrality (Bonacien 1507)	of nodes i, the eigenvector centrality of a node is the sum of the centralities of its
	neighbors multiplied by a constant $\frac{1}{\lambda}$: $C_{eig}(j) = \frac{1}{\lambda} \sum_{i} a_{i,j} C_{eig}(j)$.
	Rearranged in matrix form one gets the eigenvector equation
	$Ax = \lambda x$ which is eponymous for this centrality measure.
	It can be interpreted as measuring the role of a firm in the network.
	The algorithm is similar to eigen vector centrality, but it only ranks nodes according
	to the structure of the incoming edges. The value of the PageRank can be defined
	recursively according to the formula: $PR(i) = \frac{1-d}{N} + d \sum_{j \mapsto i} \frac{PR(j)}{L(i)}$,
Pagerank (Page et al 1999)	where $PR(i)$ is the PageRank of a node i , N is the number of nodes,
r ugerunn (r uge er ur 1999)	L(j) is the total amount of links originating from j and
	the sum is taken over all nodes j having a link to node i.
	The quantity d ranges between 0 and 1 and represents the impact of a dumping factor,
	which is the probability that a given link can arise anywhere. As in the default case,
	here d is set to 0,85.

Introduction	Literature O	Data 00	Methodology O	Results 00	Conclusion	References	Appendi x 000000●00000

Statistic	Mean	St. Dev.	Min	Max
indegree.i	1.006	3.215	0	124
outdegree.i	1.006	8.988	0	405
w.indegree.i	1,004,407.000	16,176,495.000	0	893,693,002
w.outdegree.i	1,004,407.000	16,031,511.000	0	747,595,002
page.i	0.0002	0.0003	0.0001	0.013
eigen.i	0.031	0.061	0	1
btweenness.i	0.0001	0.001	0	0
count.l	2.832	12.687	0	395
w.indegree.l	396,777.600	5,172,144.000	0	167,542,724
indegree.a	0.017	0.137	0	2
w.indegree.b	173,320.800	3,353,682.000	0	145,830,000

Descriptive statistics of clustering variables

Introduction	Literature 0	Data 00	Methodology 0	Results 00	Conclusion	References	Appendix 0000000●0000
Annend	ix IV/· P						

Quality of representation

Variable contribution

Appendix V: Kmeans Clustering

_	indegree.i	outdegree.i	w.indegree.i	w.outdegree.i	pageranks.i	eigenc.i	harmonicc.i	betweenessc.i	count.l	w.indegree.l	indegree.a	w.indegree.a
1	-0.10	-0.08	-0.05	-0.06	-0.11	-0.07	-0.26	-0.08	-0.10	-0.07	-0.12	-0.05
2	0.55	0.37	0.20	0.18	0.70	0.42	2.57	0.35	0.89	0.41	0.95	0.15
3	11.47	11.01	8.96	10.68	10.37	7.97	1.01	12.82	2.83	7.67	8.09	9.98

Average of the cluster variables according to cluster

Introduction	Literature 0	Data 00	Methodology O	Results 00	Conclusion	References	Appendi x 000000000●00

Introduction	Literature O	Data 00	Methodology O	Results 00	Conclusion	References	Appendi x 0000000000●0

Appendix : Latent profile analysis

What explains the different transaction behaviour profiles in the EU ETS?

LPA: statistical model to classify firms into mutually exclusive and exhaustive classes

- use the transaction behaviour variables for the creation of classes
- specify firm information data as covariates

Variable	Details
Sector	Energy, Carbon leakage, finance, other (NACE code)
Productivity	Revenue/number of employees
Compliance	(dummy, regulated or not)
Net balance	Free allocation - verified emissions
Net market size	Banked allowance estimation