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Efficient Rate Design

A rate design is a relationship of the rates for a single category of mail to an hedonic 

property of the mail. 

Example: Single-Piece Bound Printed Matter.  The rate is a function of the weight per 

piece.  

In general, the U.S. Postal Service (USPS) tariff is an hedonic price function that relates 

many categories of mail to a number of hedonic properties such as weight per 

piece, distance transported, speed of delivery, pro-sortation level, etc.

At present USPS (and, previously, the PRC) depend upon rules of thumb to design rates. 

A typical rule scales the marginal cost for an individual category to derive rates that 

recover a specified contribution to offset USPS’ total non-variable costs (aka 

“institutional” cost).

An efficient rate design would recover the same contribution with the least loss of welfare.  

This is an extension of the principle that underlies Ramsey-Boiteux pricing.

The paper presents a derivation of two simple propositions that govern the design of 

efficient rates.  

Application of the propositions is illustrated with an example. 

The propositions and example demonstrate that USPS’ rules of thumb are likely to leave  

“free lunches” in the form of many small welfare gains that can be recovered with no 

loss in USPS’ net revenue.
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The Demand Model

The demand model is a natural generalization of a linear demand function, 𝑄 = 𝛼 + 𝛽𝑃, 

to accommodate volumes and prices that are continuous functions of an hedonic 

property over a specified range.

The demand function is represented as a linear integral equation:

𝑄 𝑢 = 𝛼 𝑢 − 𝛽 0׬
1
𝐼 𝑢, 𝑣 − ( Τ𝛾 𝛽)𝐾(𝑢, 𝑣) 𝑃 𝑣 𝑑𝑣 for 𝑢 ∈ 0,1 .

𝑢, 𝑣 - indices of an hedonic property with range [0,1].

𝑄 𝑢 - the demand volume function.

𝑃 𝑣 - the hedonic price function.

𝐼 𝑢, 𝑣 - the identity function, i.e., 0׬
1
𝐼 𝑢, 𝑣 𝑃 𝑣 𝑑𝑣 = 𝑃(𝑢).

𝐾(𝑢, 𝑣) - a two-variable function describing the relative cross effect of 𝑃 𝑣 on 𝑄 𝑢 .  The 

strength of a cross effect would typically increase as 𝑢 → 𝑣, i.e., as two products 

have closer hedonic properties as indexed by 𝑢 and 𝑣.  

𝛼 𝑢 - the demand volume function intercept, i.e., 𝑄 𝑢 for 𝑃 𝑢 = 0 ∀ 𝑢 ∈ [0,1].

−𝛽 0׬
1
𝐼 𝑢, 𝑣 𝑃 𝑣 𝑑𝑣 = −𝛽𝑃(𝑢) - the own-price effect, the effect on demand of changes in 

the own-price alone.  We would expect the effect to be negative, so 𝛽 > 0.

0׬
1
𝛾𝐾 𝑢, 𝑣 𝑃 𝑣 𝑑𝑣 - the combined cross-price effect,  the effect on demand of changes in 

the prices of all levels of the hedonic property.  We would expect cross-price effects 

to predominantly be substitution effects, so 𝛾 > 0 if 𝐾 𝑢, 𝑣 ≥ 0.
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The Cost Model

The cost model is a natural generalization of a linear cost function 𝐶 = 𝐶𝑓 +𝑀𝑄 to 

accommodate volumes and marginal costs that are continuous functions of an 

hedonic property over a specified range.

The cost model is also represented as a linear integral equation:

𝐶 = 𝐶𝑓 + 0׬
1
𝑀 𝑢 𝑄 𝑢 𝑑𝑢.

𝐶 - the total cost attributed to the entire category of mail.

𝐶𝑓 - the fixed component of 𝐶, usually including a stipulated portion of the post’s total 

institutional costs, i.e., costs that are non-variable at the margin.

𝑀(𝑢) – the marginal cost function.

0׬
1
𝑀 𝑢 𝑄 𝑢 𝑑𝑢 - the “volume-variable” cost of the category of mail, i.e., the component of 

cost that varies with the quantity of mail when the cost function is approximated by a 

linear equation.
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The Algebra

The paper presents an application of algebraic methods for solving linear integral 

equations.  The methods are described in a self-contained mathematical Appendix. 

The methods apply to one- and two-variable functions represented as linear and 

quadratic forms of an assumed column vector function 𝑓(𝑢) defined over the unit 

interval, 𝑢 ∈ [0,1].  The elements of 𝑓(𝑢) are elementary real-valued functions. They 

must be linearly independent and their cross-products must be integrable over the 

unit interval.  For example, 𝑓 𝑢 ′ = [1 𝑢 𝑢2… 𝑢𝑛].

One-variable functions: Linear forms.  Example, 𝑄 𝑢 = 𝑓 𝑢 ′𝑞, with 𝑞 a real vector.  

Two-variable functions: Quadratic forms.  Example, 𝐾 𝑢, 𝑣 = 𝑓 𝑢 ′𝐾𝑓 𝑣 , with 𝐾 a real 

square matrix.

The essential reproductive property of the algebra is that multiplication and division leave 

one- and two-variable functions that remain linear and quadratic forms of 𝑓(𝑢).

The algebra has many similarities to matrix algebra and allows us to solve a linear 

integral equation in a way that is similar to the way that we would solve a matrix 

equation.  For example, the inverse demand function is obtained by solving the 

linear integral demand equation for 𝑃(𝑢):

𝑃 𝑢 = ( Τ1 𝛽) 0׬
1
𝐼 𝑢, 𝑣 + 𝐵(𝑢, 𝑣) 𝛼 𝑣 − 𝑄(𝑣) 𝑑𝑣 for 𝑢 ∈ [0,1].

𝐼 𝑢, 𝑣 and 𝐵(𝑢, 𝑣) are two-variable functions with matrices that can be calculated as 

described in the Appendix.

5



An Outline of the Math

At the heart of the paper is an application of the algebra to manipulate the solution to a 

“classical” problem from the calculus of variations.

The problem is to find the function 𝑃(𝑢) that maximizes social welfare subject to the 

condition that revenue covers cost (including 𝐶𝑓).  Social welfare is defined as the 

sum of consumers’ and producer’s surpluses.  

The math consists of formulating an integral equation for welfare, forming a Lagrangian 

from the equation and the revenue condition, and then, deriving the Euler equation 

for the Lagrangian.  The Euler equation is a necessary condition for the 

maximization of an integral equation such as the Lagrangian.

The Euler equation is manipulated algebraically to yield two remarkably simple 

propositions describing the essential properties of an efficient price function, 𝑃(𝑢), 
and the corresponding efficient quantity (volume) function, 𝑄(𝑢).  

Proposition 1: The efficient price function is a weighted average of the marginal cost 

function and the zero-volume price  function. 

Proposition 2:  The efficient volume function is proportional to the volume function 

corresponding to marginal cost pricing.

Finally, it is shown how the Propositions may be employed to derive the efficient price 

function, 𝑃 𝑢 , and volume function, 𝑄(𝑢), for a predetermined cost contribution 𝐶𝑓.
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Example: A “Normal” Kernel

The function, 𝐾(𝑢, 𝑣), is a two-variable function that approximates a normal distribution 

with random variable 𝑢 and mean 𝑣.

Following the algebra, 𝐾 𝑢, 𝑣 = 𝑓 𝑢 ′𝐾𝑓(𝑣), a quadratic form. For the example, 𝑓 𝑢 ′ =
1 𝑢 𝑢2 … 𝑢16 .

The real square matrix 𝐾 is derived from a statistical fit of  the normal density as 

described in the paper.

Below: blue is the normal density with mean 0 and 𝜎 = 0.125, the red curve is the 

approximation of 𝐾(𝑢, 𝑣), for 𝑣 = 0; the green curve is the approximation for 𝑣 = 0.5.  

Different values of 𝑣 simply slide the normal approximation horizontally.
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Example: Proposition 1

Proposition 1: The efficient price function is a weighted average of the marginal cost 

function and the zero-volume price  function. 

Blue:  The marginal cost function.  Assumed to be a linear function of weight per piece.

Red:  The zero-volume price function.  The linear integral equation for demand is solved 

for the inverse demand function which is a linear integral equation for price as a 

function of quantity.  The inverse is then evaluated with quantity set to zero at all 

levels of weight per piece.

Black:  The efficient price function.  The weight for the average is chosen so that the 

efficient price function yields a pre-determined contribution to institutional cost.  
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Example: Proposition 2

Proposition 2:  The efficient volume function is proportional to the volume function 

corresponding to marginal cost pricing.

Blue:  Marginal cost volume, the demand function evaluated using marginal cost  as the 

price function.

Black:  The efficient volume function.  The proportion is identical to the weight used to 

calculate the efficient price function following Proposition 1, i.e., the proportion that 

yields the specified contribution to institutional cost.  

The efficient price function is obtained by evaluating the inverse demand function for the 

efficient volume.
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The Case for Efficient Rate Design

The current USPS practice is (roughly) to design rates by scaling the marginal cost 

function.  Intuitively, this seems like a reasonable way to relate rates to an hedonic 

property.  However, the propositions and example show that this will result in an 

inefficient rate design except in the rare case when 𝐶𝑓 = 0.

The information requirements for applying the propositions are not any different than the 

information requirements of current practice.  Both require estimates of the demand 

and cost equations.

The actual welfare gain from imposing an efficient design in any single instance is likely 

to be small.  But a complex modern postal tariff contains many instances where 

rates are related to an hedonic property. 

The assumption of linear forms for the integral equations for demand and cost do not 

seriously limit the applicability of Propositions 1 and 2.  The Euler equation and the 

propositions derived from it must hold for linearizations of these equations in the 

region of the efficient  𝑃 𝑢 and 𝑄(𝑢).

Likewise, the limits on the  selection of the real vector function 𝑓(𝑢) and the range 𝑢 ∈
[0,1] are unimportant in practice.  The index 𝑢 and the function 𝑓(𝑢) can be chosen 

to approximate, with sufficient accuracy, any of the one- or two-variable functions 

that are likely to be encountered in any actual economic application.

In general, there appears to be little to prevent USPS and other posts from applying 

Propositions 1 and 2 to improve the efficiency of their tariffs. 
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