UK Parcel Market Trends in the Pre- and Post-Covid Environment: An Initial Assessment

Catherine Cazals and Thierry Magnac (Toulouse School of Economics) Jonathan Pope and Soterios Soteri (Royal Mail Group)

30th Conference on Postal and Delivery Economics, 25-27 May 2022, Rimini, Italy

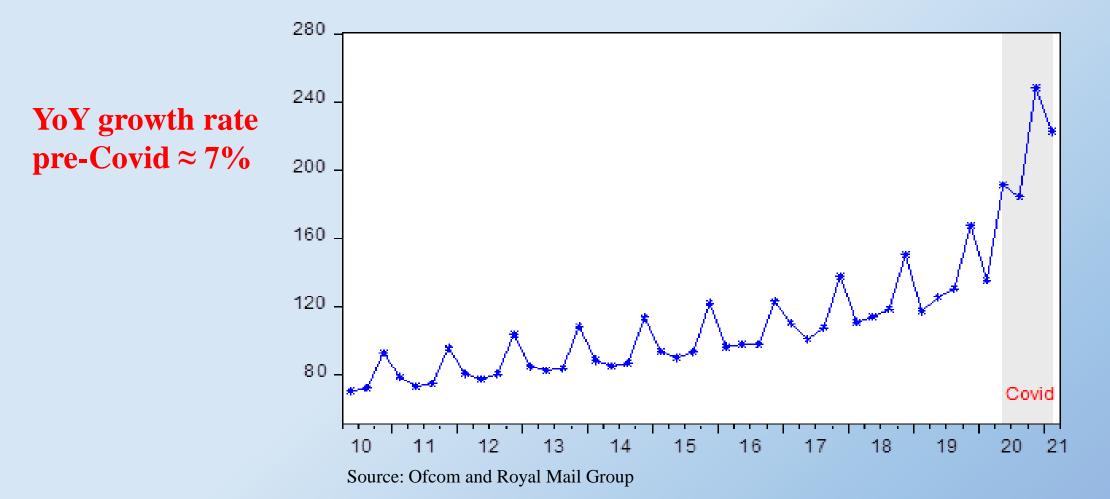
1. Introduction

Covid-19 \rightarrow impact on all aspects of life.

Health restrictions have strongly constrained mobility of all kinds.

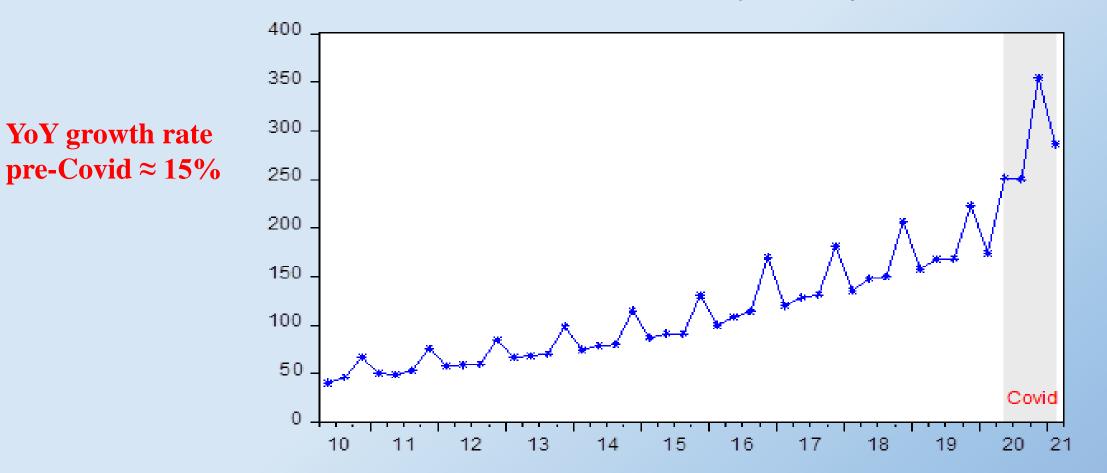
Change in purchasing behavior \rightarrow shift to distance selling.

In most countries, parcel market:


 \rightarrow expanding in recent years due to development of e-retail

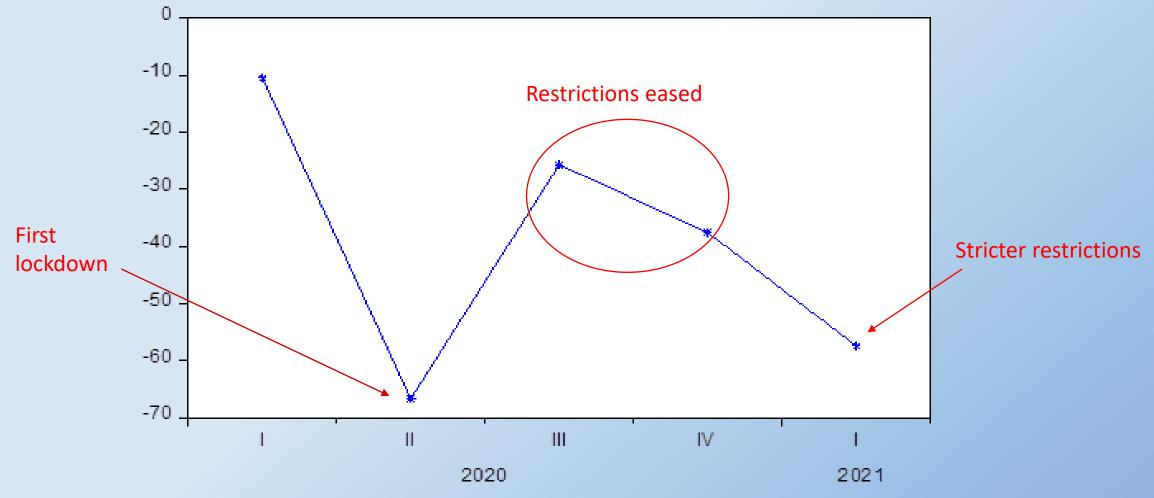
 \rightarrow accelerated in a post-Covid environment

This study : econometric analysis of impact of the Covid pandemic on parcel market volumes in UK


Domestic parcel market volume : 2010q2-2021q1

Parcel volume index (2015=100)

Key driver : e-retail sales volumes



Source: Office for National Statistics average weekly Internet non-food store and non-store retailing

Retail mobility rates (RMR)

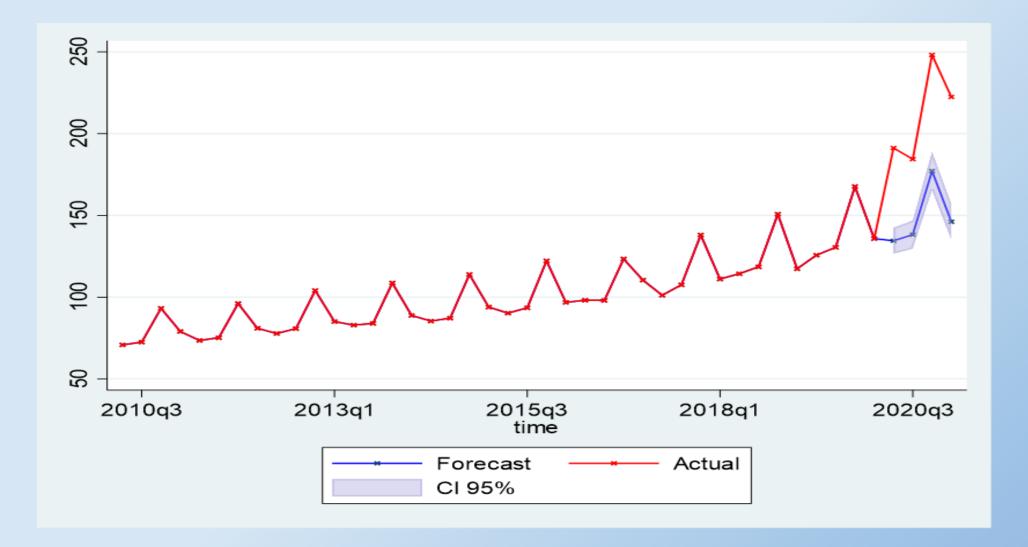
 \rightarrow change in the number of visits to retail and recreation sites during Covid crisis, relative to pre-Covid period (in %)

Source: Google LLC "Google COVID-19 Community Mobility Reports

2. Time series analysis of parcel market trends

Evaluation of the post-Covid uplift in parcel volumes

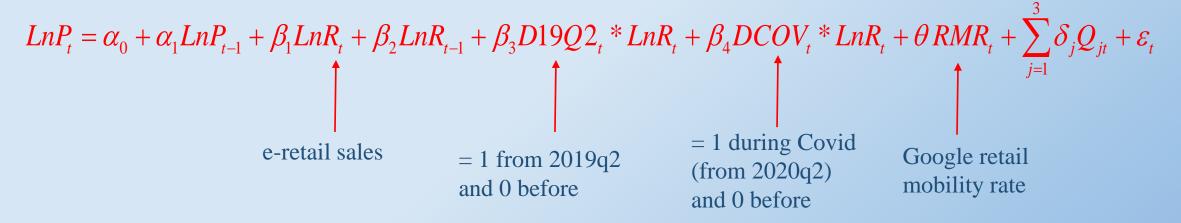
Use of data over *pre-Covid period* (until 2020q1):


 \rightarrow estimation of an ARIMA(2,1,0) model

$$\Delta LnP_{t} = \alpha_{0} + \alpha_{1}\Delta LnP_{t-1} + \alpha_{2}\Delta LnP_{t-2} + \delta_{1}Q_{1t} + \delta_{2}Q_{2t} + \delta_{3}Q_{3t} + \varepsilon_{t}$$

Parcel volume index(Δ: difference operator)

Dummies for quarters


 \rightarrow forecast from 2020q2 until 2021q1 : *counterfactual forecast of parcel volumes if no Covid*.

 \rightarrow suggest volumes increased by around 40% above pre-Covid trend, during the first year of Covid

3. Econometric analysis of the demand for parcels

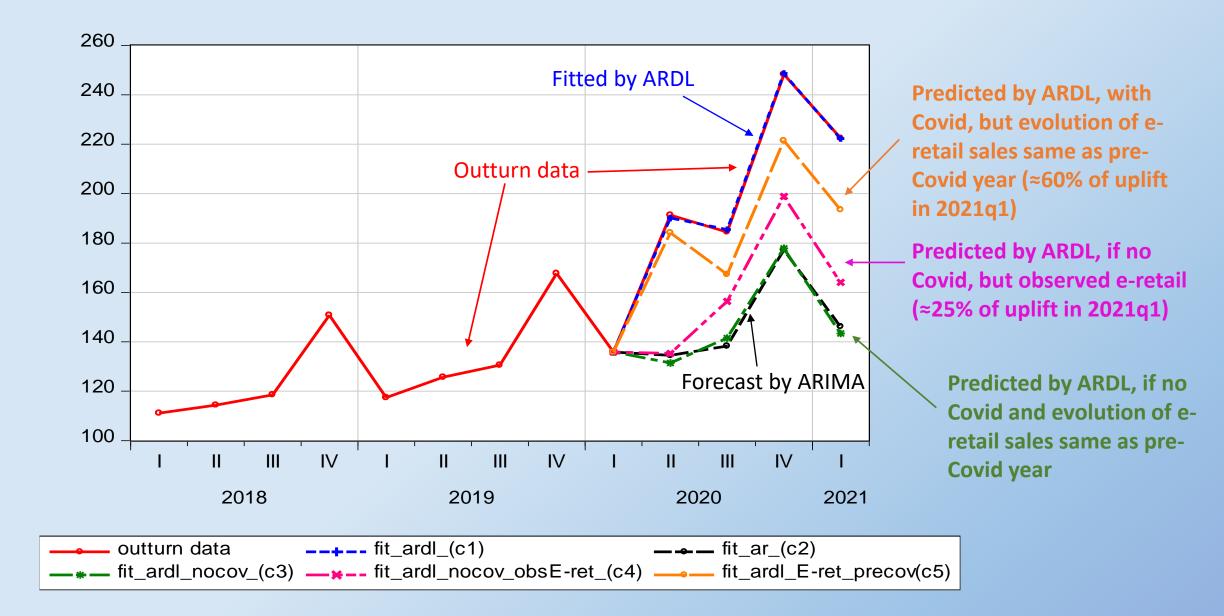
Model for parcel volumes as a function of e-retail sales and variables capturing the Covid crisis, over the period 2010q2-2021q1 \rightarrow *Auto Regressive Distributed Lag (ARDL):*

 \rightarrow can be written as an error correction model (ECM) to derive the long term relationship between parcel volume, e-retail sales and mobility rate.

Long run relationship from ECM form

	Dep var : Ln P _t	Coefficient	Std. Error	t-Statistic	Prob.
	D19Q2 _t *Ln R _t	0.0171	0.0032	5.4163	0.0000
	DCOV _t *Ln R _t	0.0128	0.0065	1.9609	0.0584
	Ln R _t	0.3812	0.0188	20.2214	0.0000
	RMR _t	-0.0046	0.0009	-4.8648	0.0000
	Const	3.0610	0.0904	33.8475	0.0000

Before 2019q2 : elasticity of parcels with respect to e-retail sales = 0.38. Structural breaks : *from* 2019q2, the elasticity increases to 0.398, and in the Covid period the elasticity increases again to 0.411.


Each 1 percentage point reduction in mobility, holding others factors constant, increases the parcel volumes by 0.46% on average

4. Assessment of the impact of the pandemic

Use of the ARDL model to evaluate contributions of e-retail sales and changes in retail mobility rates in explaining the post-Covid uplift in parcel volumes.

Various scenarios:

- No Covid (DCOV=RMR=0) and e-retail = pre-Covid trend
- No Covid (DCOV=RMR=0) and e-retail = outcome data
- Covid but e-retail = pre-Covid trend

5. Conclusion

Large increase of UK parcel volumes during the Covid crisis, mainly due to:

- implementation of sanitary restrictions that have led to a shift towards online shopping (explains $\approx 25\%$ of uplift)
- changes in consumer behaviour in the post-Covid environment, as captured mainly by retail mobility rate changes (explains $\approx 60\%$ of uplift)

And after the Covid pandemic: back to pre-crisis behaviour ? Probably not, but the extent of the (permanent) changes is very uncertain

Appendixes

A. Estimated ARIMA(2,1,0)

Variable	Coefficie nt	Std. Error	t-Statistic	Prob.
Cons	0.2629	0.0103	25.4138	0.0000
Q1	-0.2781	0.0438	-6.3446	0.0000
Q2	-0.3195	0.0445	-7.1774	0.0000
Q3	-0.3221	0.0362	-8.8931	0.0000
ΔLnP_{t-1}	-0.6741	0.1670	-4.0358	0.0003
ΔLnP_{t-2}	-0.3799	0.1670	-2.2748	0.0300
R ²	0.975			

B. Estimated ARDL

Dep var : Ln P _t	Coefficient	Std. Error	t-Statistic	Prob.
Ln P _{t-1}	0.0953	0.1131	0.8428	0.4054
Ln R _t	0.0893	0.1372	0.6511	0.5195
Ln R _{t-1}	0.2555	0.1604	1.5930	0.1207
D19Q2 _t *Ln R _t	0.0155	0.0039	3.9722	0.0004
DCOV _t *Ln R _t	0.0116	0.0068	1.6885	0.1007
Q1	-0.2872	0.0728	-3.9470	0.0004
Q2	-0.2279	0.0371	-6.1438	0.0000
Q3	-0.2090	0.0427	-4.8983	0.0000
RMR _t	-0.0041	0.0008	-5.3212	0.0000
Const	2.7693	0.3918	7.0687	0.0000
R ²	0.995			

C. Estimated ARDL : ECM form

Dep var : Δ Ln P _t	Coefficient	Std. Error	t-Statistic	Prob.		
ΔLn R _{t-1}	0.0893	0.0561	1.5906	0.1212		
Q1	-0.2872	0.0259	-11.0750	0.0000		
Q2	-0.2279	0.0167	-13.6647	0.0000		
Q3	-0.2090	0.0183	-11.4007	0.0000		
EC _{t-1} *	-0.9047	0.0743	-12.1773	0.0000		
Long run relation (error correction relationship)						
Dep var : Ln P _t	Coefficient	Std. Error	t-Statistic	Prob.		
D19Q2 _t *Ln R _t	0.0171	0.0032	5.4163	0.0000		
DCOV _t *Ln R _t	0.0128	0.0065	1.9609	0.0584		
Ln R _t	0.3812	0.0188	20.2214	0.0000		
RMR _t	-0.0046	0.0009	-4.8648	0.0000		
Const	3.0610	0.0904	33.8475	0.0000		

	C1	C2	С3	C4	C5
			Predicted P by ARDL if	Predicted P by ARDL if no	
			e-retail=precovid trend	Covid (RMR=DCOV=0) and	Predicted P by ARDL if
	Fitted P by	Forecasted P	and no Covid	e-retail sales equal outcome	e-retail=precovid and
	ARDL	by ARIMA	(RMR=DCOV=0)	data	Covid
2020Q2	190.105	134.522	131.404	135.255	184.102
2020Q3	185.381	138.266	141.502	156.333	167.255
2020Q4	248.670	177.201	177.844	198.853	221.407
2021Q1	222.282	146.124	143.417	164.076	193.523