

The Future of Renewable Hydrogen in the European Union

Market and geopolitical implications

Alejandro Nuñez-Jimenez

Florence School of Regulation, April 27, 2022

The present and future of hydrogen

What is the picture today?

• Hydrogen in the world

Where will the European Union get competitive and secure renewable hydrogen from?

- Nuñez-Jimenez, Alejandro and Nicola De Blasio. "The Future of Renewable Hydrogen in the European Union: Market and Geopolitical Implications." Belfer Center for Science and International Affairs, Harvard Kennedy School, March 2022.
- <u>https://www.belfercenter.org/publication/future-renewable-</u> hydrogen-european-union-market-and-geopolitical-implications-0

ENVIRONMENT AND NATURAL RESOURCES PROGRAM

The Future of Renewable Hydrogen in the European Union

Market and Geopolitical Implications

HARVARD Kennedy School
BELFER CENTER
for Science and International Affairs

Aleiandro Nuñez-Jimenez

Nicola De Blasio

REPORT March 2022

Q&A

Why there is so much excitement about hydrogen?

- Expectations for high demand
- Clean hydrogen production gap

HYDROGEN IN THE WORLD

Global hydrogen demand could multiply x6 driven by new hydrogen uses

90 Mt H

2020

2030

2040

New hydrogen uses Transport, Power, NH3 fuel, synfuels, buildings

530 Mt H₂

Old hydrogen uses Chemicals, refining, steelmaking

Data: IEA GHR 2021, Net Zero Emissions scenario.

2010

2000

2050

IEA. All rights reserved.

Note: CCUS = carbon capture, utilisation and storage.

Also in the European Union

EU production capacity 11,3 Mt/yr

- **SMR:** 77%
- Coal coking: 14%
- **SMR+CCS:** 0.4%
- Electrolysis: 0.1%
- Other by-product: 8%

Clean hydrogen production Is not growing fast enough

Where will the EU obtain competitive and secure renewable hydrogen supplies from in the long term?

@anunezjimenez

Hydrogen enjoys unprecedented momentum worldwide, and Europe is at the forefront of the global hydrogen race

McKinsey & Company, 2021, Hydrogen Insights, for the Hydrogen Council, July 2021, https://hydrogencouncil.com/en/hydrogen-insights-2021/

To stay ahead, the European Union (EU) needs a cohesive long-term strategy for competitive, secure hydrogen markets

Pflugmann, F., De Blasio, N. 2020. The Geopolitics of Renewable Hydrogen in Low-Carbon Energy Markets, Geo., Hist., and Int. Rel. doi:10.22381/GHIR12120201

In July 2020, the EU hydrogen strategy presented renewable hydrogen as key for reaching climate neutrality in 2050

EUROPEAN COMMISSION	
Brussels, 8.7.2020 COM(2020) 301 final	
COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS	
A hydrogen strategy for a climate-neutral Europe	
Allejemo	
EN	EN

- Renewable hydrogen (water electrolysis using wind and solar) is the key priority
- Deployment targets for electrolyzers are set (6GW 2024, 40GW 2030) to produce about 10 Mt H₂ by 2030

• After 2030, no targets

Aspirations for "an open and competitive EU hydrogen market"

Recognition of "new opportunities for re-designing Europe's energy partnerships"

European Commission (EC) (2020), 'A hydrogen strategy for a climate-neutral Europe', COM(2020) 301 final, 8 July 2020. <u>https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0301</u>

On March 8, 2022, the European Commission raised its ambition on renewable hydrogen with the RepowerEU plan

While the EU strategy lays the foundations for an EU hydrogen economy, it leaves the door open to different views on what future hydrogen markets may look like after 2030

Our research analyzes three scenarios in which the EU prioritizes different strategic variables

Scenario	Priority	Description	Countries
Hydrogen Independence	Energy independence	EU internal production only	EU member states
Regional Imports	Cost optimization	EU internal production with imports from regional neighbors	EU + Regional partners : neighboring export champions (Morocco, Norway) + renewable-rich, high infrastructure potential countries (Albania, Egypt, Iceland, Turkey)
Long-Distance Imports	Energy security	Long-distance imports complement EU and regional supplies	EU + Regional neighbors + Long- distance partners: long-distance export champions (Australia, United States)

Each scenario is investigated in three steps

Future EU hydrogen demand was projected because no consumption target is set in the EU strategy

Own elaboration based on a review of recent literature. Conversion using lower heating value of hydrogen when required.

1. All scenarios are viable pathways to meet long-term EU hydrogen demand

Authors' own analysis.

•

But to become Hydrogen Independent by 2050, a vast EU internal market for hydrogen has to emerge

Authors' own analysis. Domestic self-consumption refers to renewable hydrogen produced and consumed within the same country.

2. Production cost depends on renewable hydrogen production scale

WAHC stands for weighted average hydrogen cost based on renewable hydrogen production cost as a function of produced quantity in each country excluding transportation costs and making use of lowest-cost resources

18

3. Imports could lower supply costs by 6% to 12%

 Between 253 and 294 bn USD/yr supply costs, equivalent to 3.3 to 3.9 USD/kg

- Long-Distance Imports provide no additional costs reduction opportunities
- Ammonia shipping lowers supply costs thanks to lower transportation costs and access to cheaper imports

Hydrogen Independence relies on countries in the EU's periphery bridging production gaps in Central Europe

Hydrogen Independence scenario-with

hydrogen gas pipelines and ammonia shipping

Hydrogen Independence scenario with hydrogen gas pipelines and **liquefied hydrogen shipping**

- 70% of EU demand would be met by internal EU trade
- Pipelines from Spain and Portugal, the Baltic states (Estonia, Latvia, Lithuania), and Denmark would cross the continent to supply resource- constrained EU countries

Authors' analysis. Flows below 0.5 Mt/yr and domestic self-consumption excluded for clarity.

Regional Imports lower supply costs by importing over 60% of EU hydrogen demand from North Africa and North Europe

Regional Imports scenario with hydrogen

gas pipelines and ammonia shipping

Regional Imports scenario with hydrogen gas pipelines and **liquefied hydrogen shipping**

Authors' analysis. Flows below 0.5 Mt/yr and domestic self-consumption excluded for clarity.

 Imports supply 62% of EU demand with liquefied hydrogen shipping

- Imports rise to 84% if ammonia shipping is available
- Norway and Morocco would be the largest suppliers to the EU
- Reliance on a few regional suppliers could reproduce past patterns of energy dependence

Long-Distance Imports help diversify imports cost-effectively but only if shipping hydrogen becomes competitive

- Imports cover 63% to 83% of EU demand
- Ammonia shipments from the United States could limit EU dependence on any single producer to 20% of overall demand

Authors' analysis. Flows below 0.5 Mt/yr (except from the United States on the left graph) and domestic self-consumption excluded for clarity.

To make any of these scenarios a reality, at least between 2.0 and 2.4 trillion USD need to be invested until 2050

- Over 80% of investment needs are for renewable electricity generation and electrolyzers
- Imports lower total investment needs by 9% to 13% despite requiring higher investments in transportation infrastructure
- With imports 57% to 78% of investments vital for the EU's long-term hydrogen strategy outside the EU

Scenario labels: HI: Hydrogen Independence, RI: Regional Imports, LDI: Long-Distance Imports. Transportation scenario labels: LH2: hydrogen gas pipelines and liquefied hydrogen shipping, NH3: hydrogen gas pipelines and ammonia shipping.

4. Scenario rankings remain the same under very different technology cost assumptions

Change in supply costs [%]

Scenario labels: HI: Hydrogen Independence, RI: Regional Imports, LDI: Long-Distance Imports. Transportation scenario labels: LH2: hydrogen gas pipelines and liquefied hydrogen shipping, NH3: hydrogen gas pipelines and ammonia shipping.

- Lower cost of capital (4%) reduces supply costs by one-fourth to between 2.5 and 2.9 USD/kg compared to 3.3 to 3.9 USD/kg in the reference case (8%)
 - A "switch effect" would limit the impact of costlier-than-anticipated renewables
- Changes in transportation infrastructure costs
 have only minor impacts

Policy implications

Renewable hydrogen adoption at scale in the EU will require to:

- Lower market risk and remove commercialization barriers to achieve the required economies of scale
- Define clear policies to stimulate strong renewable sources growth, particularly in those member states that can become regional exporters
- Fund innovation and pilot projects to accelerate progress towards costcompetitive renewable hydrogen technologies
- Coordinate the enabling infrastructure development and deployment across the continent, based on optimized flows
- Harmonize standards and regulations, including certificates of origin, to ensure renewable hydrogen flows seamlessly across borders

Regional Imports or Long-Distance Imports will also require:

- Long term contracts and direct investments to help reduce market risk for producing nations
- **Transparent regulations** and long-term investments in enabling infrastructure to send strong signals to investors in producing nations
- International standards for renewable hydrogen production, transportation, and use

TEAM PROFILE

Future of Hydrogen Initiative is a project at the Belfer Center of the Harvard Kennedy School led by Dr. Nicola de Blasio and Prof. Henry Lee

Nicola de Blasio

Senior Fellow Environment and Natural Resources Program (ENRP)

Science, Technology and Public Policy Program (STPP)

Henry Lee

Director ENRP

Senior Lecturer in Public Policy Harvard Kennedy School

Co-Principal Investigator Energy Technology Innovation Policy

Member of the Board Belfer Center

Faculty Affiliate Middle East Initiative

Alejandro Nuñez-Jimenez

Postdoctoral Research Fellow Environment and Natural Resources Program (ENRP)

Science, Technology and Public Policy Program (STPP)

Fridolin Pflugmann

Predoctoral Research Fellow Environment and Natural Resources Program (ENRP)

Science, Technology and Public Policy Program (STPP)

@n_deblasio

@BelferENRP

@anunezjimenez

Find our full team and publications: www.belfercenter.org/program/environment-and-natural-resources#!future-of-hydrogen

Thanks for your attention!

I look forward to your questions

54-20000-000