Investment Incentives in Tradable Emissions Markets with Price Floors

Tim Cason Purdue University, USA

John Stranlund University of Massachusetts-Amherst, USA

Frans de Vries University of Aberdeen, Scotland

Motivation

- Important tradable emissions markets, such as EU ETS and Regional Greenhouse Gas Initiative (RGGI), have been subject to emissions uncertainty and (extremely) low allowance prices
- Low allowance prices undermine expected return on investment and incentives for technological innovation in abatement technology (Burtraw et al. 2010; Taylor 2012)
- Price floors can guard against the threat of low allowance prices and under-investment in abatement technology (Roberts & Spence 1976; Philibert 2009; Wood and Jotzo 2011)
- Allowance prices likely to be determined by price floors (and ceilings) rather than allowance supply because of large uncertainty in BAU emissions (Borenstein et al. 2019)

Previous Literature

- Theoretical and empirical literature on price floors and effect on investment in abatement technology is limited and non-integrated
- Theoretical literature
 - Analysis of alternative price stabilization mechanisms (Fell et al. 2012; Grüll & Taschini 2011)
 - Relationship between price controls and permit banking (Fell & Morgenstern 2012)
 - Optimal design of emissions markets with price controls and enforcement (Stranlund & Moffitt 2014), and co-pollutants (Stranlund & Son 2019)
- Experimental literature
 - Price controls in laboratory settings (Isaac & Plott 1981; Smith & Williams 1981)
 - Design of emissions markets and permit price risk (Stranlund et al. 2014; Holt & Shobe 2016; Perkis et al. 2016; Friesen et al. 2019; Salant et al. 2020)
- Price controls and investment literature
 - Normative study on optimal design of emissions markets with price controls (Weber & Neuhoff 2010)
 - Real options model to study impact of price floor on timing of investment in low-carbon technology in electricity sector (Brauneis et al. 2013)
- Environmental policy and induced innovation (e.g., Requate & Unold

Our Contribution

- We **develop theory** that predicts firms' investment incentives in abatement technology for emissions trading markets featuring cost uncertainty and regulated by price floors
- We **employ an experimental tradable emissions market** to test the theory
- Main lesson (theoretical *and* experimental): Compared to an unregulated market, investment incentives are greater in a market with a price floor in place

Theoretical Model: Marginal Abatement Costs (MAC)

Firm's MAC function

$$MAC^{i}(x^{i}, u) = b^{i}(1 - \beta x^{i}) + u - cq^{i}$$

- b^{i}, c intercept and slope parameters q^{i} emissions
- u random variable with $\mathbb{E}(u) = 0$

 $x^i \in \{0,1\}$ investment in technology that shifts MAC^i down

 β % reduction in *MAC*^{*i*} from investment

 $b^i\beta/c$ — reduction in firm's unregulated level of emissions from investment

Theoretical Model: Technology Choice (0)

 $x = (x^1, ..., x^n)$ — vector of firms' technology choices

 $\mathbb{E}(p(\mathbf{x}))$ — expected permit price given technology choices

Firm's expected reduction in compliance costs with investment

$$r(b^i, \mathbf{x}) = \frac{b^i \beta \mathbb{E}(p(\mathbf{x}))}{c}$$

Theoretical Model: Technology Choice (1)

A firm's expected reduction in compliance costs with investment

$$r(b^i, \mathbf{x}) = \frac{b^i \beta \mathbb{E}(p(\mathbf{x}))}{c}$$

f - fixed cost of investment

Firm's investment choice

$$x^{i} = \begin{cases} 0 \text{ if } f > r(b^{i}, \mathbf{x}) \\ 1 \text{ if } f < r(b^{i}, \mathbf{x}) \end{cases}$$

Result: Since $r(b^i, x)$ is increasing in b^i , in an equilibrium with investors and non-investors, only high-cost firms invest

Technology Choice with and without Price Floor

Let $x^{*}(x^{**})$ be equilibrium investments $MAC^{i}(x^{i} = 1, u = 0) MAC^{i}(x^{i} = 0, u = 0)$ without (with) a hard price floor, s Then $\mathbb{E}(p(\boldsymbol{x}^*)) < \mathbb{E}(p(\boldsymbol{x}^{**}, s))$ and $r(b^i, \boldsymbol{x}^*) < r(b^i, \boldsymbol{x}^{**}, s)$

Impact of Price Floor on Firms' Investment

Experimental Design and Data

- Treatment variable: price floor
- Baseline (no-control): market without a price floor
- Each market consisted of 8 heterogeneous firms (traders) where firm heterogeneity (*b*^{*i*}) can take on values 100, 200, ..., 800
- Discretized quantity of emissions (q)
- Abatement cost shock (*u*) can take value from {-40, -20, 0, 20, 40} with equal probability
- Fixed discrete shift of abatement cost (β = 0.252) due to investment, with investment being a dichotomous choice {0, 1}
- Fixed investment cost (f = 200)

Experimental Design and Data

- Data were collected from a total of **11 markets** (all comprising 8 traders)
 - ✓ No-control baseline: 5 markets
 - ✓ Price floor treatment: 6 markets
- **Double auction market institution** where traders make investment and permit trading decisions across **16 periods** (trader type being fixed)
- A total of **184 emissions permits distributed equally across 8 traders** (i.e., each trader holds 23 permits initially) at start of each period
- New random draws of random variable *u* at start of each period
- In price floor treatment, no offers or transactions were allowed at prices below the price floor (i.e., excess permit supply when floor is binding)

Marginal Abatement Costs

Cost **Price Floor** Quantity

MAC (without Investment)

Vertical lines correspond to 5 abatement cost shocks affecting amount of required abatement; horizontal line indicates price floor of 70

Hypotheses

- 1. (Investment): In a competitive permit market,
- a) A price floor increases the number of firms investing in abatement technology
- b) Change in investment frequency is greatest for "intermediate abatement cost" firms

- **2. (Prices):** Emission permit prices are
- a) Lower on average without the price floor
- b) Lower in periods with favorable shocks that lower abatement costs
- c) Lower in periods in which greater number of firms invest in abatement technology

Results: Cost-Reducing Investment (0)

Mean Number of Investing Firms, by Period (pooled over 11 markets)

Results: Cost-Reducing Investment (1)

Mean Number of Investing Firms, by Market (periods 6-16 only)

Results: Cost-Reducing Investment (2)

P-values shown for firm types $b^i = 200, 300, 400$

Results: Permit Prices (0)

Table 1: Equilibrium Permit Prices by Abatement Cost Shock and Number of Investors

	Abatement Cost Shock (u)					
(#) Investors	-40	-20	0	20	40	
(0) None	75	90	105	135	150	
(1) $b^i = 800$	45	60	75	105	120	
(2) $b^i = 800,700$	30	45	60	90	105	
(3) $b^i = 800,700,600$	15	30	45	75	90	
$(4) \ b^i = 800,700,600,500$	0	15	30	60	75	
$(5) \ b^i = 800,700,600,500,400$	0	0	15	45	60	
$(6) \ b^i = 800,700,600,500,400,300$	0	0	0	30	45	
(7) $b^i = 800,700,600,500,400,300,200$	0	0	0	30	45	
$(8) \ b^i = 800,700,600,500,400,300,200,100$	0	0	0	30	45	

Prices are predicted to be lower with favorable cost shocks and when more firms invest in abatement cost reductions

Results: Permit Prices (1) No Price Control (Mean Prices, final 5 trades each period)

Results: Permit Prices (2) With Price Floor (Mean Prices, final 5 trades each period)

Results: Permit Prices (3)

	<u>No Price Control</u>		Price Floor Treatment		
Mean Price in:	Final 5	Final 3	Final 5	Final 3	
	Transactions		Transactions		
	(1)	(2)	(3)	(4)	
Cost Shock $(-40 \text{ to } 40)$	0.38^{**}	0.41^{**}	0.04^{**}	0.04**	
	(0.07)	(0.07)	(0.01)	(0.02)	
Number of Investors $(0 \text{ to } 8)$	-3.29*	-3.86*	-0.70	-0.34	
	(2.02)	(2.05)	(0.52)	(0.57)	
Period Number (6 to 16)	-0.15	-0.11	-0.09	-0.10	
	(0.53)	(0.53)	(0.10)	(0.11)	
Constant	48.64 **	50.52^{**}	76.77**	74.76^{**}	
	(10.19)	(10.27)	(3.33)	(3.62)	
R-squared	0.430	0.477	0.051	0.074	
Observations	49	49	66	66	

Price responsiveness to investment and cost shock occurs only without the price floor

Summary and Main Lesson

- This paper develops a theoretical model and implements a laboratory experiment to examine the impact of the introduction of a hard price floor in emissions trading markets on the incentives to invest in cost-reducing abatement technology
- Consistent with the theoretical prediction, the experimental results confirm that a price floor is conducive to enhancing investment incentives. In particular, in a heterogeneous market featuring investors and non-investors, a price floor expands the number of investors
- Prices are responsive to investment (and abatement cost shocks) only when the price floor is not implemented