Energy needs for adaptation

significantly impact mitigation pathways

Enrica De Cian^{1,2,3}

Co-authors: Francesco Pietro Colelli^{1,2,} Johannes Emmerling^{2,3}, Giacomo Marangoni^{2,3}, Malcolm Mistry^{1,2}

1 - Department of Economics, Ca' Foscari University of Venice, 30121 Venice, Italy

- 2 Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), 30175 Venice, Italy
- 3 European Institute on Economics and the Environment (EIEE), 20144 Milano, Italy

FSR 7th Climate Annual Conference

November 29, 2021

1. State of the Art

- Integrated Assessment Models (IAMs) prominently contributed to the elaboration of energy scenarios and future mitigation pathways
- While the feasibility of 1.5°C scenarios call for an energy demand to decarbonize that is as low as possible, to extent of additional energy needs of adaptation has been overlooked
- Lacking long-run adaptation and focusing on residential demand underestimates the additional adaptation energy needs
- The adaptation-energy feedback is rarely included in up-to-date energy scenarios and mitigation pathways

2. The WITCH model

- Hybrid model: Macro-economic structure is hard-linked to the energy sector
- Scale: global, 17 regions
- Economy: top-down intertemporal optimal growth model, dynamic, perfect foresight
- Energy: bottom-up description of technological options.
- Endogenous technical change Learning-By-Doing and Learning-By-Researching
- Climate: damage feedback via temperature change
- Strategic: non cooperative interactions between regions

2. WITCH adaptation-energy feedback loop

-25

china te europe jjonkor brazil brazil brazil usa southafrica usa sasia indonesia seasia seasia seasia seasia

3. Results

Additional generation capacity by technology

Share of coal, oil and gas on the additional capacity mix:

- 2030: from 85% (Reference) to 80%- 65% (Carbon tax scenarios)
- 2050: from 40% (Reference) to 20%-10% (Carbon tax scenarios)
- 2100: up to 10% in the Reference

4. Conclusions and policy implications

- We find that adaptation directly affects the shape and the costs of mitigation pathways.
- IAMs ignoring energy system costs and environmental implications of rising adaptation needs **underestimate the benefits of mitigation policies**.
- Failing to rapidly rise the ambition of mitigation policy means that adaptation will exacerbate the lock-in into polluting fossil-fuel generation.
- Climate adaptation interacts with the **co-benefits of mitigation**: as the new fossil-based generation would increase **air pollution**.
- Regional results have a bearing on **climate policy design** if a different policy instrument (emission trading schemes with initial allocations) is adopted.

Thank you!

www.energy-a.eu

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 756194.

3. WITCH adaptation-energy feedback loop

y

d

Extreme temperature indicators (ETI)

- Empirically estimated reduced-form relationship between ETIs and • annual average temperature (country-year panel).
- WITCH projects regional ETIs from the future regional temperature level.

$$y_{i,t} = {}_{1}^{(k)} temp_{i,t}d_{i}^{(k)} + \dots + {}_{m}^{(k)} temp_{i,t}^{(m)}d_{i}^{(k)} + {}_{m+1} c_{i} + \epsilon_{i,t}$$

where	m maximum degree of the polynomial
y climate extreme indices	k cluster number $(1n;$ with n maximum number of clusters)
temp mean temperature	ϵ random errors
c fixed effects	i countries
d cluster dummy variable	$t ext{ time}$

3. WITCH adaptation-energy feedback loop

Energy demand shocks (implementation)

The energy (EN) shocks are implemented through changes in electricity (EL) and fuels' (NEL) productivity in the production tree:

$$EN_{i,t} = [\tilde{\alpha}_{EL,i}EL_{i,t}^{\rho_{EN}} + \tilde{\alpha}_{NEL,i}NEL_{i,t}^{\rho_{EN}}]^{\frac{1}{\rho_{EN}}}$$

$$\tilde{\alpha}_{EL,i,t} = \alpha_{EL,i}\frac{\Phi_{EL,i,t}Q_{EL,i,t}}{\sum_{f}Q_{f,i,t}}$$

$$\tilde{\alpha}_{NEL,i,t} = \alpha_{NEL,i}\left[\frac{\Phi_{GAS,i,t}Q_{GAS,i,t}}{\sum_{f}Q_{f,i,t}} + \frac{\Phi_{OIL,i,t}Q_{OIL,i,t}}{\sum_{f}Q_{f,i,t}}\right]$$

Additional results

Adaptation to future climate change will need more energy

Additional results

Adaptation directly affects emissions and carbon prices

Additional results Adaptation affects power generation costs

Global LCOE change with adaptation

