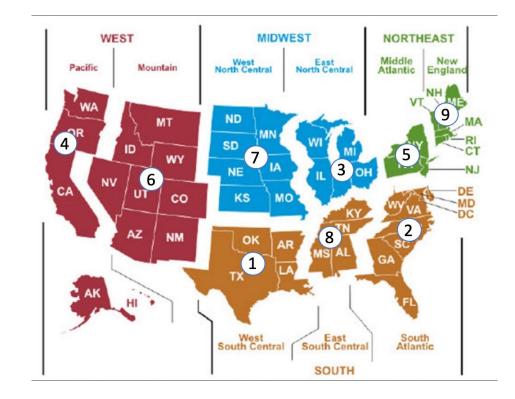
Modelling Optimal Hydrogen Transmission Network Infrastructure

FSR 10th Annual Conference

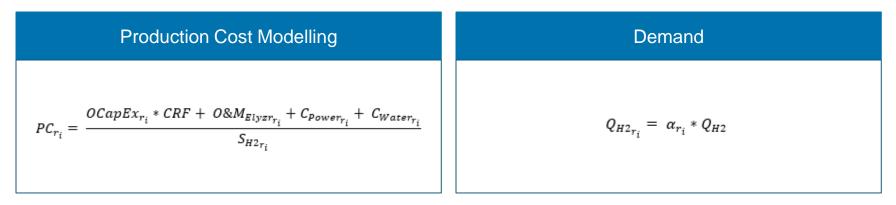
Authors: Drake Daniel Hernandez and Dr. Emre Gencer

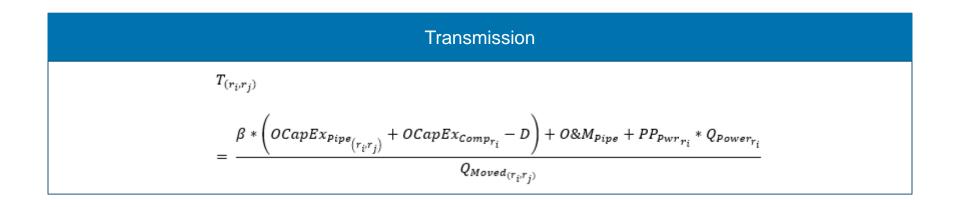
Hydrogen is a fundamentally different energy commodity for which regulatory structures have yet to be developed

Supply	Demand	
 Electric Power Natural Gas Coal Industrial waste 	 Transportation Electric Power Industrial End Uses Others 	


Many commercially available models have been developed to understand midstream requirements for electric power and natural gas, but not for hydrogen			
 Electric Power – Aurora – Plexos 	 Natural Gas GPCM and RBAC Suite 		

Methodology to Assess Hydrogen Infrastructure Build-out and Cost Impacts


Key Steps


- 1. Model 2050 hydrogen production costs within a given region
- 2. Estimate 2050 demand scenarios for hydrogen and allocate demand to each region
- Model transmission costs associated with moving hydrogen via inter-regional pipeline
- Optimize the hydrogen pipeline network to minimize total delivered cost of hydrogen across all regions

Three sub-models underpinning broader optimization: (i) Production Cost, (ii) Demand, and (iii) Transmission

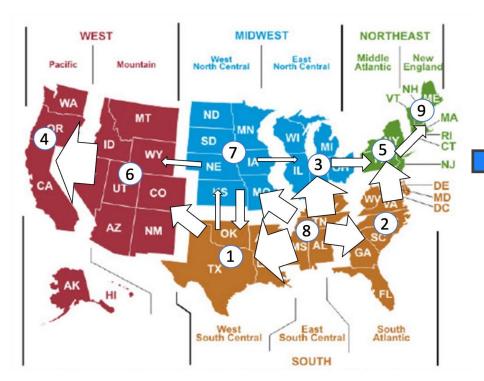
Objective Function and Model Formulation

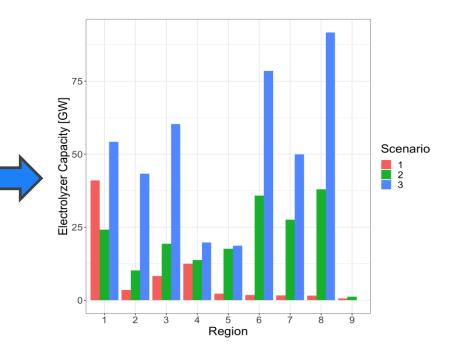
Objective Function

- Minimize the sum of hydrogen expenditures across all regions in 2050
 - Subject to the fact that all supply produced within the year must also be consumed in that same year

$$\min \sum_{(r_i,r_j)} P_{(r_i,r_j)} * Q_{H2_{r_i}}$$

subject to
$$\sum_{r_i} S_{H2} = \sum_{r_i} Q_{H2}, \forall i, j$$


• Key Model outputs


- Connection between each region

 Measured in terms of power capacity
- Total electrolyzer capacity required within each region
- Total cost incurred within the country with network and without network

Example Model Results

	1.6 Quads	4.1 Quads	9.1 Quads
\$0.01/kWh	1	1	1
\$0.05	1	0.99	0.88
\$0.12 (AEO Base)	0.99	0.96	0.91

