Welfare, Redistributive and Revenue Effects of Policies Promoting Fuel Efficient and Electric Vehicles

Patrick Bigler Doina Radulescu

University of Bern, Oeschger Centre for Climate Change Research and CESifo

June 11th, 2021

FSR Annual Conference 'Infrastructure Investment Challenges: Reconciling Competition, Decarbonisation and Digitalisation'

Motivation - CO2 Emissions Transport Sector Switzerland

- Passenger car emissions increased by 44% since 2000 and represent 60% of road related emissions in Europe
- In Switzerland, the road transport sector accounts for around 39% of overall CO₂ emissions.
- Challenge: Achieve net zero emissions by 2050 while individual traffic projected to increase by 18% until 2040.

Research Questions

- What factors drive households' preferences towards electric and hybrid cars?
- How likely are different policies to increase the uptake of environmentally friendly cars? (i.e. Subsidy, fuel tax, mileage dependent charge)
- What are the effects of these policies across the income distribution?

Demand model (Grigolon, Reynaert, Verboven, 2018; Xing, Leard and Li, 2021) Household *i's* utility from purchasing new vehicle *j* :

$$u_{ij} = \beta^{x} x_{j} + \beta^{z} z_{i} x_{j} + \alpha_{1} (\log(p_{j}) + \gamma(G_{ij} + T_{j})) + \alpha_{2} \frac{\log(p_{j})}{y_{i}} + \epsilon_{ij}$$
(1)
Variable Costs:

$$G_{ij} = \rho m_i [e_j g_j (1 + \tau_j^g) + \tau_j^m]$$
⁽²⁾

$$T_j = \rho t_j \tag{3}$$

Capitalization factor:

$$\rho = \sum_{s=1}^{S} \frac{1}{(1+r)^s}$$
(4)

r=6%; S=10 years Assumption:

Households take prices and taxes as given

Future expectation is based on today's value

Inelastic mileage

Conditional Logit

Probability of household *i* to choose vehicle type *j*:

$$P_{ij} = \frac{e^{\beta^{x} x_{j} + \beta^{z} z_{i} x_{j} + \alpha_{1} (\log(p_{j}) + \gamma(G_{ij} + T_{j})) + \alpha_{2} \frac{\log(p_{j})}{y_{i}}}{\sum_{j} e^{\beta^{x} x_{j} + \beta^{z}_{j} z_{i} x_{j} + \alpha_{1} (\log(p_{j}) + \gamma(G_{ij} + T_{j})) + \alpha_{2} \frac{\log(p_{j})}{y_{i}}}$$
(5)

ϵ_{ij} i.i.d. Type 1 extreme value distributed Choice Set

Each household's choice set consist of 489 theoretical options based on fuel type (Gasoline, Diesel, Hybrid, Electric) and make-model segmentation (i.e. VW Golf, Audi A6)

- ▶ include car type fe; brand country of origin fe
- address price endogeneity by using a cost shifter and control function approach (Train and Petrin, 2011) - annual penalties for fleet wide fuel efficiency standards car importers are subject to.
- Also include typical BLP instruments

The Dataset

We have access to several datasets for households in the Canton of Bern, merging data from

1. Tax office of Bern

Income, wealth, household size, marital status, age

- 2. Road Traffic Office Canton of Bern
 - Data on new car registrations between 2008-2019 (ownership in 2019)
- 3. Eurotax, Federal Roads Office (Switzerland) and LEMNET
 - Vehicle prices, Fuel efficiency, engine power, car size
 - Data on number and location of EV charging stations

Conditional logit - estimated coefficients

	(1)	(2)	(3)
Car price (log)	-0.227 • • •	-0.034	-2.116 • • •
	(0.03)	(0.04)	(0.11)
Price (log) / income	0.002+	0.003+	0.002+
(-6/)	(0.00)	(0.00)	(0.00)
Variable costs (log rai)	-0.684 * **	-0.520 + ++	-0.350 + ++
Ant mixe course (rold by)	(0.08)	(0.10)	(0.10)
Engine nound (KW)	-0.000	-0.001+	0.007 + ++
ragine points (it ii)	(0.00)	(0.00)	(0.00)
Contrainty	0.00)	0.00)	(0.00)
Car neight	(0.00)	(0.10)	-1.000 • ••
a	(0.09)	(0.13)	(0.16)
Car weight	0.000	-0.001 • • •	0.001 • ••
	(0.00)	(0.00)	(0.00)
Hybrid engine	-0.751 • • •	-0.690 • ••	-0.205
	(0.16)	(0.16)	(0.16)
Electric engine	-1.983 • ••	-1.731 • ••	-1.178 • ••
	(0.23)	(0.24)	(0.24)
Diesel engine	-0.760 • • •	$-0.732 \bullet \bullet \bullet$	-0.567 • ••
	(0.02)	(0.02)	(0.02)
Car size	-0.127 • • •	-0.033	-0.006
	(0.02)	(0.02)	(0.02)
Size heterogeneity			
2 Persons	0.163 • • •	0.187 • • •	0.184 • • •
	(0.02)	(0.02)	(0.02)
3 Persons	0.315 • • •	0.362 + ++	0.359 • ••
	(0.03)	(0.03)	(0.03)
4 Persons	0.516 • • •	0.582 + ++	0.577 + ++
	(0.02)	(0.03)	(0.03)
5+ Persons	0.714	0.793 + ++	0.785 * **
	(0.04)	(0.04)	(0.04)
KW heterogeneity	(()	(1111)
40.60 wasts old	-0.002 • • •	-0.002 + ++	-0.002 + ++
to-ou your out	(0.00)	(0.00)	(0.00)
60 :	0.007	0.007	0.007
our years out	-0.000 • • •	(0.00)	(0.00)
UV alleria	(0.00)	(0.00)	(0.00)
EV checks	0.911-	0.911.	0.210-
Ev aggiomeration	0.311*	0.311*	0.310+
	(0.14)	(0.14)	(0.14)
EV rural	-0.023	-0.025	-0.026
	(0.15)	(0.15)	(0.15)
Distance to EV	-0.030	-0.029	-0.029
	(0.02)	(0.02)	(0.02)
Nb. Charging (5km)	0.007.	0.007.	0.007+
	(0.00)	(0.00)	(0.00)
EV 2018	0.133	0.088	0.123
	(0.14)	(0.14)	(0.14)
EV 2019	1.357 • • •	1.307 • • •	1.359 • ••
	(0.13)	(0.13)	(0.13)
Control function	No	No	Yes
Observations	9,816,000	9,816,000	9,816,000
Nr. of cases	23,074	23,074	23,074
Log Likelihood	-136,093.3	-134,604	-134.380.7
Car type fe	No	Yes	Yes
Car brand (country)	No	Yes	Yes
(country)		1.12	

+p<0.1; * p<0.05; ** p<0.01; *** p<0.001

Coefficients based on estimated conditional and mixed logit model. Estimated standard errors in parentheses. Model (1) - (3) do not have random coefficients. Coefficients in Model (1) and (5) are based on control function approach with estimation of the pricing equation in a separate model based on cost shifters in a first step.

Increase in fossil fuel levy by 0.12 CHF/I - Change in Probabilities

	Overall	1 st inc. quartile	2 nd inc quartile	3 rd inc quartile	4 th inc quartile
Gasoline	-0.00077	-0.00077	-0.00076	-0.00077	-0.00078
Diesel	0.00028	0.00027	0.00028	0.00028	0.00028
Electro	0.00030	0.00031	0.00029	0.00029	0.00030
Hybrid	0.00020	0.00019	0.00020	0.00021	0.00021

Increase in fossil fuel levy by 0.12 CHF/I - Welfare analysis

	Cons. surplus (MCHF)	CS (% change)	CO_2 levy (kCHF)	Levy incidence (%)	Cartaxes (CHF)	CO_2 (t)	CO2 (% change)
1 st inc quartile	-1.530	-0.0999	195.65	0.204	-228.33	- 2.084	-0.054
2 nd inc quartile	-1.585	- 0.105	191.34	0.106	-217.40	-1.978	-0.052
3 rd inc quartile	-1.710	- 0.109	197.7	0.077	-223.07	-2.079	-0.055
4 th inc quartile	- 2. 04 4	- 0.108	188.89	0.036	-231.23	- 2.027	-0.054
Total	-6.870	-0.106	773.56	0.073	-900.02	-8.171	- 0. 05 3

Notes: 1st quartile: income < 62.9 kCHF, 2nd quartile: 62.9>=income < 93.67 kCHF, 3rd quartile: 93.67>= income <131.7 kCHF and 4th quartile: income >= 131.7 kCHF. Consumer surplus based on logsum formula.

Introduction of mileage tax (0.023 CHF/km) - Change in Probabilities

	Overall	1^{st} inc. quartile	2 nd inc quartile	3 rd inc quartile	4 th inc quartile
Gasoline	0.0018	0.0018	0.0018	0.0018	0.0018
Diese	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002
Electro	-0.0012	-0.0012	-0.0011	-0.0011	-0.0012
Hybrid	-0.0004	-0.0004	-0.0004	-0.0005	-0.0005

 $\mathit{Notes:}$ 1st quartile: income < 62.9 kCHF, 2nd quartile: 62.9>=income < 93.67 kCHF, 3rd quartile: 93.67>= income < 131.7 kCHF and 4th quartile: income >= 131.7 kCHF.

Introduction of mileage tax (0.023 CHF/km) - Welfare analysis

	Cons. surplus (MCHF)	CS (% change)	Mileage tax (kCHF)	Incidence (%)	Car taxes (CHF)	CO_2 (t)	CO_2 (% change)
1 st inc quartile	-5.212	-0.340	666.69	0.696	3,172	13.924	0.360
2 nd inc quartile	-5.375	-0.355	65 0.21	0.360	3,046	13.004	0.344
3 rd inc quartile	-5.764	-0.367	666.65	0.260	3,039	13.478	0.344
4 th inc quartile	- 6.901	-0.367	636.39	0.122	3,023	12.807	0.342
Total	-23.252	-0.358	2,619.92	0.248	12,279	53.213	0.348

Notes: 1²¹ quartile: income < 62.9 kCHF, 2nd quartile: 62.9>=income< 93.67 kCHF, 3rd quartile: 93.67>= income<131.7 kCHF and 4th quartile: income >= 131.7 kCHF. Consumer surplus based on bgsum formula.

EV subsidy (4k CHF) - Change in Probabilities

	Overall	1^{st} inc. quartile	2 nd inc quartile	3 rd inc quartile	4 th inc quartile
Gasoline	-0.0029	-0.0031	-0.0028	-0.0027	-0.0028
Diese	-0.0010	-0.0010	-0.0010	-0.0010	-0.0010
Electro	0.0041	0.0043	0.0040	0.0039	0.0041
Hybrid	-0.0002	-0.0002	-0.0002	-0.0002	-0.0002
Notes	1 st quartil	e income < 62.9	kCHE 2 nd quartile	62.9>=income<	- 93.67 kCHF 3 rd

Notes: 1st quartile: income < 62.9 kCHF, 2^{na} quartile: $62.9 \ge income < 93.67$ kCHF, 3^r quartile: $93.67 \ge income < 131.7$ kCHF and 4th quartile: income >= 131.7 kCHF.

EV subsidy (4k CHF) - Welfare analysis

	Cons. surplus (kCHF)	CS (% change)	Total subsidy (kCHF)	Car taxes (kCHF)	CO_2 emission (t)	CO2 (% change)
1 st inc quartile	387.93	0.025	201.53	-3.021	-17.057	-0.44
2 nd inc quartile	369.37	0.024	186.90	-2.813	-15.376	-0.406
3 rd inc quartile	384.51	0.025	185.64	-2.785	-15.485	-0.396
4 th inc quartile	487.83	0.026	193.85	-2.905	-15.370	-0.411
Total	1,629.63	0.025	767.91	-11.524	-63.289	-0.414

Notes: 1^{at} quartile: income < 72.5 kCHF, 2^{ad} quartile: 72.5>=income < 101.6 kCHF, 3^{rd} quartile: 101.6>= income <138.6 kCHF and 4^{tb} quartile: income >= 138.6 kCHF. Consumer surplus based on logsum formula.

Conclusion

- Overall probability to acquire a gasoline, hybrid or EV amounts to 67%, 5% and 1.7% respectively
- ► Increase in fuel tax
 - Decreases consumer surplus; small reduction in CO₂ emissions of the new car fleet; regressive effects
- Introduction of EV subsidy
 - Increases consumer surplus; significantly decreases CO₂ emissions of the new car fleet; requires moderate outlays
- Introduction of mileage tax
 - Increases probability to buy gasoline driven cars; increases CO₂ emissions of the new car fleet; highly regressive