

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig

Renewable energy policies in federal government systems

Jasper Meya and Paul Neetzow

26.11.2020

FSR Climate Annual Conference 2020

Motivation and research question

Renewable energy (RE) support policies

- ▶ Most common instruments to decarbonize power sector (Meckling et al., 2017).
- ightarrow Closely approximate to social optimum (Abrell et al., 2019).
- ▶ Often implemented in multi-level governance systems
- \rightarrow All EU countries use several RE support instruments & are characterized by overlapping national and lower-level RE policies (del Río & Mir-Artigues, 2014).
- $\rightarrow\,$ Complexity from overlapping policies and opposing objectives

Recent shifts from price (e.g. feed-in tariff) to quantity instruments (e.g. auction systems) to support RE (REN21, 2019).

Motivation and research question

Renewable energy (RE) support policies

- ▶ Most common instruments to decarbonize power sector (Meckling et al., 2017).
- \rightarrow Closely approximate to social optimum (Abrell et al., 2019).
- ▶ Often implemented in multi-level governance systems
- \rightarrow All EU countries use several RE support instruments & are characterized by overlapping national and lower-level RE policies (del Río & Mir-Artigues, 2014).
- $\rightarrow\,$ Complexity from overlapping policies and opposing objectives

Recent shifts from price (e.g. feed-in tariff) to quantity instruments (e.g. auction systems) to support RE (REN21, 2019).

Research question

How does the instrument choice of the upper-level government (price vs. quantity) affect the incentives for lower-level governments to support RE?

Literature contributions

- Public goods provision in federal systems (Myers, 1990; Caplan et al., 2000)
- ightarrow We study incentives through policies instead of direct provision
- Pollution control in multi-level governance systems (Williams III, 2012; Coria et al., 2018)
- $\rightarrow\,$ Instead we focus on impure public good like RE
- ▶ RE support policies (Ambec & Crampes, 2019; Abrell et al., 2019)
- ightarrow Additionally, we consider overlapping policies
- ▶ RE support in multi-level systems (Meier & Lehmann, 2019)
- $\rightarrow\,$ We focus on policy differentiation on federal level and case of $\it n$ states

Structure of the presentation

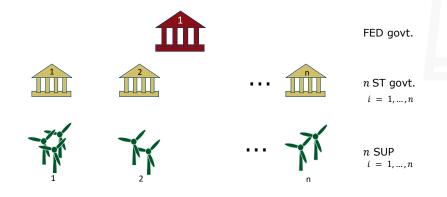
Introduction

Model

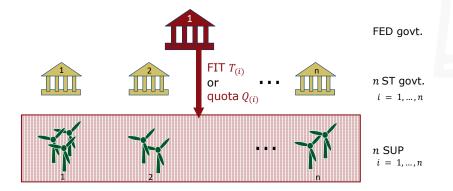
Theoretical results

Empirical application

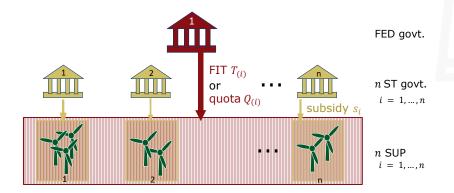
Discussion and conclusion


We extend Williams III (2012) model on pollution control in federal systems to RE.

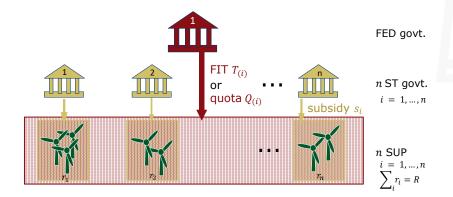
▶ One federation with *n* states


We extend Williams III (2012) model on pollution control in federal systems to RE.

- ▶ One federation with *n* states
- In each state a representative, competitive supplier or RE capacity


Federal government supports RE by

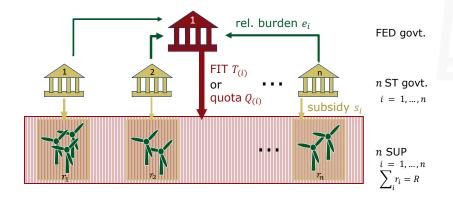
- ▶ (State-specific) feed-in tariff (FIT), $T_{(i)}$, paid per unit of RE capacity
- or \blacktriangleright (State-specific) **quota**, $Q_{(i)}$, and corresp. uniform quota price $P_{(i)}$.


$\ensuremath{\textit{State governments}}\xspace$ support RE by

- \rightarrow **Subsidy** s_i paid per unit of RE capacity.
- $\rightarrow\,$ May account also for non-financial RE support

RE suppliers receive combined support $\{T_{(i)}, P_{(i)}\} + s_i$

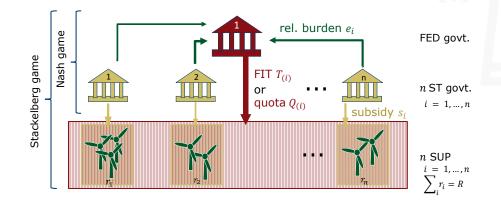
 \rightarrow Deploy RE capacity r_i , with $R := \sum_i r_i$



5 | 19

State governments incur

▶ **Relative burden** of financing federal RE support $e_i \in [0, 1]$ with $\sum_i e_i = 1$


 $\rightarrow\,$ Considered as an exogenous model parameter

5 | 19

Two-stage game structure

- 1. Federal and all state governments choose level of RE support simultaneously
- 2. After RE support is announced, suppliers choose state-specific RE deployment r_i

Costs and benefit assumptions

Deploying RE capacity in a state causes convex local costs, $C_i(r_i)$

$$\rightarrow \frac{\partial C_i(r_i)}{\partial r_i} > 0, \ \frac{\partial^2 C_i(r_i)}{\partial r_i^2} = b \ge 0$$

and concave local and national (spillover) benefits $B_i(r_i, R) \Rightarrow$ impure public good

$$\rightarrow \ \frac{\partial B_i(r_i,R)}{\partial r_i} > 0, \ \frac{\partial B_i(r_i,R)}{\partial R} > 0, \qquad \frac{\partial^2 B_i(r_i,R)}{\partial r_i^2} \le 0, \ \frac{\partial^2 B_i(r_i,R)}{\partial R^2} \le 0$$

A state's marg. benefit from RE deployment weakly decreases in national capacity (e.g. due to merit-order effect)

$$ightarrow rac{\partial^2 B_i(r_i,R)}{\partial R \partial r_i} \leq 0$$

Formal decision problem under nationwide FIT

For combined support by a **FIT** and state subsidies the decision problem reads:

$$\max_{T} \Pi^{FED} = \sum_{i=1}^{n} \left[-C_i(r_i) + B_i(r_i, R) \right],$$
(1)

$$\forall i: \max_{s_i} \Pi_i^{ST} = -C_i(r_i) + B_i(r_i, R) - e_i \sum_{j=1}^n T r_j + T r_i, \qquad (2)$$

s.t.
$$\forall i : \max_{r_i} \prod_{i}^{SUP} = -C_i(r_i) + (s_i + T) r_i.$$
 (3)

Nationwide FIT and state subsidies

Policy support in Nash equilibrium

The federal government's nationwide FIT exactly corresponds to the sum of marginal national benefits (and does not depend on the local benefits):

$$\widetilde{T} = \sum_{j=1}^{n} \frac{\partial B_j}{\partial R}.$$

► A state's subsidy equals its marginal benefits minus its marginal burden:

$$\widetilde{s}_{i} = \frac{\partial B_{i}}{\partial r_{i}} + \frac{\partial B_{i}}{\partial R} - e_{i} \sum_{j=1}^{n} \frac{\partial B_{j}}{\partial R}.$$
(5)

(4)

Efficiency of combined support

Proposition 1.

Under a nationwide **FIT** a state decreases its subsidy in response to an increase in its relative burden. The combined support is too low in state i if the states burden share exceeds it's share of marginal benefits from nationwide deployment (and vice versa)

$$\forall i: \ \widetilde{T} + \widetilde{s}_i \stackrel{\geq}{\equiv} \Psi_i^* \iff e_i \stackrel{\leq}{\leq} \frac{\frac{\partial B_i}{\partial R}}{\sum_{j=1}^n \frac{\partial B_j}{\partial R}}.$$
 (6)

Here, Ψ_i^* is the optimal level of RE support and given as (proof in paper):

$$\forall i: \Psi_i^* := \frac{\partial B_i}{\partial r_i} + \sum_{j=1}^n \frac{\partial B_j}{\partial R}.$$
(7)

9 | 19

Formal decision problem under nationwide quota

For combined support by a quota and state subsidies the decision problem reads:

$$\max_{Q} \Pi^{FED} = \sum_{i=1}^{n} \left[-C_i(r_i) + B_i(r_i, R) \right],$$
(8)

$$\forall i: \max_{s_i} \Pi_i^{ST} = -C_i(r_i) + B_i(r_i, R) - e_i \sum_{j=1}^n P_j r_j + P_j r_i, \qquad (9)$$

s.t.
$$\forall i : \max_{r_i} \prod_{i}^{SUP} = -C_i(r_i) + (s_i + P) r_i,$$
 (10)

$$R = Q. \tag{11}$$

Nationwide quota and state subsidies

Policy support in Nash equilibrium

The federal government sets the nationwide quota so that the quota price equals the sum of marginal benefits of national RE (similar to FIT):

$$\overline{P} = \sum_{j=1}^{n} \frac{\partial B_j}{\partial R}$$
(12)

A state's subsidy is determined by the marginal local benefits and by the effect of the state's RE capacity on the marginal national benefits received by all states:

$$\forall i : \overline{s_i} = \frac{\partial B_i}{\partial r_i} + [r_i - e_i Q] \sum_{j=1}^n \frac{\partial^2 B_j}{\partial R \partial r_i}.$$
 (13)

Efficiency of combined support

Proposition 2.

Under a nationwide **quota** a state increases its subsidy in response to an increase in its relative burden. The combined support through auction and subsidy in a state is inefficiently high if the relative burden share of the state exceeds its capacity share

$$\forall i: \ \overline{P} + \overline{s_i} \gtrless \Psi_i^* \iff e_i \gtrless \frac{r_i}{Q}. \tag{14}$$

Efficiency of combined support

Proposition 2.

Under a nationwide **quota** a state increases its subsidy in response to an increase in its relative burden. The combined support through auction and subsidy in a state is inefficiently high if the relative burden share of the state exceeds its capacity share

$$\forall i: \ \overline{P} + \overline{s_i} \stackrel{\geq}{\equiv} \Psi_i^* \iff e_i \stackrel{\geq}{\equiv} \frac{r_i}{Q}. \tag{14}$$

Proposition 1.

Under a nationwide **FIT** a state decreases its subsidy in response to an increase in its relative burden...

$$\forall i: \ \widetilde{T} + \widetilde{s}_i \stackrel{\geq}{\geq} \Psi_i^* \iff e_i \stackrel{\leq}{\leq} \frac{\frac{\partial B_i}{\partial R}}{\sum_{j=1}^n \frac{\partial B_j}{\partial R}}$$
(6)

ightarrow Opposing effects on states' subsidies and thus total support

Empirical application for German onshore wind

Context

- The 16 German states have played an active role in the energy transition (Schönberger & Reiche, 2016)
- ▶ Switch from FIT (1991-2014) to discriminatory price auctions (2017-)
- ▶ The federal RE policy is financed by a surcharge on the electricity price

Empirical application for German onshore wind

Context

- The 16 German states have played an active role in the energy transition (Schönberger & Reiche, 2016)
- ▶ Switch from FIT (1991-2014) to discriminatory price auctions (2017-)
- ▶ The federal RE policy is financed by a surcharge on the electricity price

Calibration

- Relative burden e_i is approximated using state-specific power demand data from Kunz et al. (2017)
- State's average wind capacity available for generation, r_i, is specified by combining RE capacity data (Kunz et al., 2017) with state-specific full load hours (Koch et al., 2016)

Table: Incentive changes for state support after switch from FIT to nationwide auctions in Germany. Illustrative colors, states sorted North to South.

State	Relative burden, e_i	Capacity share, $\frac{r_i}{R}$	Incentive for subsidies
SH	0.024	0.197	\downarrow
MV	0.013	0.057	\searrow
HH	0.032	0.003	1
HB	0.004	0.001	7
BB	0.022	0.121	\searrow
BE	0.037	0.003	1
NI	0.092	0.249	\searrow
NRW	0.200	0.086	7
ST	0.020	0.102	$\mathbf{\hat{z}}$
SN	0.042	0.026	7
ТН	0.021	0.029	\rightarrow
HE	0.064	0.018	7
RP	0.068	0.062	\rightarrow
SL	0.015	0.005	7
BY	0.182	0.026	1
BW	0.165	0.014	1

Discussion

Critical model assumptions

- Nash game between governments
- $\rightarrow\,$ All governments can adjust equally well
- Exogenous distribution of relative burden *e_i*
- $\rightarrow\,$ Reasonable when federal policy financed by consumption surcharge or from federal budget

Empirical analysis

• Divergence from institutional setting, assumption R = Q

Conclusion and outlook

- Incentives for state subsidies depend on the federal instrument choice (price vs. quantity) and their burden.
- A high state burden to finance the federal policy incentivizes lower state subsidies under price and higher state subsidies under quantity instrument.

Conclusion and outlook

- Incentives for state subsidies depend on the federal instrument choice (price vs. quantity) and their burden.
- ► A high state burden to finance the federal policy incentivizes lower state subsidies under price and higher state subsidies under quantity instrument.
- Switch from FIT to quota may reduce transmission stress in Germany.

Conclusion and outlook

- Incentives for state subsidies depend on the federal instrument choice (price vs. quantity) and their burden.
- ► A high state burden to finance the federal policy incentivizes lower state subsidies under price and higher state subsidies under quantity instrument.
- Switch from FIT to quota may reduce transmission stress in Germany.

Outlook

- Findings might generalize to other impure public goods (transport, communication).
- Different policy mixes; decision sequence; uncertainty
- More nuanced empirical analysis

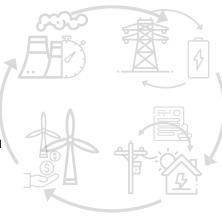
Selected references

- Abrell, J., Rausch, S., & Streitberger, C. (2019). The economics of renewable energy support. Journal of Public Economics, 176, 94–117.
- Ambec, S., & Crampes, C. (2019). Decarbonizing electricity generation with intermittent sources of energy. Journal of the Association of Environmental and Resource Economists, forthcoming.
- Caplan, A. J., Cornes, R. C., & Silva, E. C. (2000). Pure public goods and income redistribution in a federation with decentralized leadership and imperfect labor mobility. *Journal of Public Economics*, 77, 265–284.
- Coria, J., Hennlock, M., & Sterner, T. (2018). Fiscal federalism, interjurisdictional externalities and overlapping policies. University of Gothenburg Working Paper in Economics, 742.
- del Río, P., & Mir-Artigues, P. (2014). Combinations of support instruments for renewable electricity in Europe: A review. *Renewable and Sustainable Energy Reviews*, 40, 287–295.
- Koch, M., Hermann, H., Flachsbarth, F., & Tambke, J. (2016). Erstellung generischer EE-Strom-Einspeisezeitreihen mit unterschiedlichem Grad an fluktuierendem Stromangebot. Data Set Öko-Institut.
- Kunz, F., Weibezahn, J., Hauser, P., Heidari, S., Schill, W.-P., Felten, B., Kendziorski, M., Zech, M., Zepter, J., von Hirschhausen, C., Möst, D., & Weber, C. (2017). *Reference Data Set: Electricity, Heat, and Gas Sector Data for Modeling the German System*. Data Set. doi:10.5281/zenodo.1044463.
- Meckling, J., Sterner, T., & Wagner, G. (2017). Policy sequencing toward decarbonization. Nature Energy, 2, 918–922.

Selected references

- Meier, J.-N., & Lehmann, P. (2019). Federal regulation of renewable energy expansion: Allocating competences and policy instruments to government levels. In *Working Paper for EAERE Annual Conference*. Manchester, UK.
- Myers, G. M. (1990). Optimality, free mobility, and the regional authority in a federation. *Journal of Public Economics*, 43, 107–121.
- REN21 (2019). Renewables 2019 Global Status Report. Technical Report. URL: https://www.ren21.net/reports/global-status-report/.
- Schönberger, P., & Reiche, D. (2016). Why Subnational Actors Matter: The Role of Länder and Municipalities in the German Energy Transition. In C. Hager, & C. H. Stefes (Eds.), *Germany's Energy Transition* (pp. 27–61). New York: Palgrave Macmillan US. doi:10.1057/978-1-137-44288-8_2.
- Williams III, R. C. (2012). Growing state-federal conflicts in environmental policy: The role of market-based regulation. *Journal of Public Economics*, *96*, 1092–1099.

German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig



Thank you!

Contact: jasper.meya@idiv.de Twitter: @JasperMeya

Funding by the Reiner Lemoine-Stiftung, the BMBF & the DFG is gratefully acknowledged

