

The effects of energy retrofits on residential energy expenditures and carbon emissions: Evidence from France (work in progress)

> Gaël Blaise, Matthieu Glachant, Victor Kahn i3-CERNA, MINES ParisTech – PSL

FSR Climate Conference – 26 November 2020

Prendere due piccioni con una fava*

- A widespread view is that home energy retrofits would provide both economic and environmental benefits
 - Privately profitable while reducing carbon emissions and other pollutants
- This would imply that homeowners spontaneously invest in the absence of public intervention
- But they don't. So why?
- Because they are myopic. They underestimate the economic returns of energy retrofits
- The paternalistic regulator then needs to implement policies, in particular tax credits and investment subsidies, to help them correct their mistakes.

A belief increasingly challenged by recent empirical research which find limited impacts on energy use (Fowlie et al. 2018; Alberini et al. 2016; Graff Zivin and Novan 2016; Liang et al. 2017)

* kill two birds with one stone

McKinsey GHG abatement cost curves (global 2030)

This paper

What is the average impact of home energy retrofits on energy expenditures and carbon emissions in the French residential sector? What is the corresponding CO2 abatement cost ?

Three steps

- 1. We conduct a panel data analysis
 - The panel includes around 8,000 households surveyed from 2000 to 2013
- 2. We improve the external validity of these results with data on investments made in 2017
 - This leads to increase the estimates by around 50%
- 3. We perform back of the envelop calculations to estimate the CO2 abatement cost

Data

ADEME survey « Maitrise de l'Energie »

- A representive panel of home occupiers
 - Tenants and owner-occupiers
- Between 7,100 and 8,900 households by year from 2000 to 2013
- Detailed information on
 - annual energy expenditures
 - investments made (amount, types...)
 - dwelling and household characteristics

Enquête TREMI

• A one-shot survey which describes the investments made in 2017

PEGASE

- A comprehensive database of all energy supply contracsts available to private individuals in a given year
 - Used to infer energy use from energy expenditures

CARBONE

• Carbon footprint of each energy source in France

Descriptives

 13.1% of the households upgrade their homes each yr and the average amount invested is 4,239 €

Variables	Mean	SD
Investment amount	4,239€	4,601€
Annual energy expenditures	1,296€	640 €
% electricity	55%	30%
% gas	27%	31%
% heating oil	9%	23%

Share of investments made in different categories of home energy improvements

Annual energy expenditures of retrofitted vs non-retrofitted homes

Year before/after having (or not) retrofitted

Econometric model

We assume the following relationship between the capital invested in energy retrofit and the energy bill:

$$\ln(E_{it}) = \alpha K_{it-1} + \beta X_{it} + \mu_i + \delta_{r(i)t} + \lambda_{e(it)} + \varepsilon_{it}$$

- $\ln(E_{it}) = \log$ (energy bill) oh household i in year t.
- K_{it-1} = the stock of past investments in energy retrofits in year t-1
- X_{it} = a vector of control variables (household size, income, surface area)
- μ_i = household fixed effects
- $\delta_{r(i)t}$ = region-year fixed effects
- $\lambda_{e(it)}$ = fixed effects describing the heating energy source e(it) used by *i* in year *t*
- ε_{it} = error tem

We estimate the same equation for carbon emissions

25/11/2020

Endogeneity

- The decision to invest might be correlated with changes in energy consumption behavior, leading to biased estimates
 - Downward: the occupier will retire. Anticipating higher heating needs, she/he invests in order to moderate the potential increase in energy expenditures
 - Upward: the occupier's environmental awareness grows, leading him to reduce his/her energy use in the short term and to invest
- Our (imperfect) instrument
 - The household has declared in the past two years to know about two policies promoting investments in energy efficiency (grants, labeling...)

Results - Energy expenditures

Type of regression	OLS	IV
Capital Invested [k€]	-0.00230**	-0.00746**
	(0.00087)	(0.00331)
Income classes	Yes	Yes
Household size classes	Yes	Yes
Living space area classes	Yes	Yes
RegionYear FE	Yes	Yes
EnergyYear FE	Yes	Yes
Observations	28,703	28,703

The average investment (4,200 €) reduces the annual energy bill by 35 € (– 2.7%)

Results – Carbon emissions

Type of regression	OLS	IV
Capital Invested [k€]	-0.00384***	-0.0129***
	(0.00119)	(0.00462)
Income groups	Yes	Yes
Household size	Yes	Yes
Living space area	Yes	Yes
RegionYear FE	Yes	Yes
EnergyYear FE	Yes	Yes
Observations	28,703	28,703

The average investment (4,200 €) reduces direct and indirect carbon emissions by 5.4%

Comparaison with engineering estimates

Investment type	Energy savings for 1,000€ of investment
Individual condensing boiler	60 €
Attic and roof insulation	69€
Wall insulation	93 €
Collective condensing boiler	69€
Biomass heater	60 €
Energy-efficent windows	13€
Our estimate for the average investment	8.4€

Source : Les certificats d'économies d'énergie : efficacité énergétique et analyse économique (2014) Rapport du CGEDD, IGF, CGIET

- External validity?
 - A crucial problem: the study period is 2000-2013 and we are in 2020
 - The types of investments made have changed and the average amount invested has increased
 - Much more investments in attic, roof, and wall insulation

2000-2013

2017

Adjusted results 2017

	Correction factor	Impact of the average investment (12,000€)		
Energy bill	1.37	- 12.3 %	- 160 €/yr	
Carbon emissions	1.42	-21.7 %	- 760 kgCO2/yr	

Comparison with other studies

Study	Year	Country	Scope	Methodology	Main results
This study	2021	France	All operations Residential	Fixed effects panel	15 € for 1000€ invested
Alberini, Grans, Towe	2016	Maryland, USA	Heat pumps	Diff-in-diff	36\$ for 1000\$ invested*
Fowlie, Greenstone, Wolfram.	2018	Michigan, USA	Modest households Building envelope	RCT	40\$ for 1000 \$ invested. No rebound effect evidence
Graff Zivin, Novan	2016	San Diego, USA	Modest households Electricity bill	Diff-in-diff	80 \$ saved for 1000 \$ invested (only for home with cooling)
Liang, Qiu, Ruddell	2017	Phoenix, USA	Residential & tertiary electricity bill	Fixed effects panel	12% savings for tertiary, 8% savings for residential

*Our extrapolation. We took 6000€ a heat pump, and 1775 kWh/month the energy consumption and 0,12\$/kWh the electricity price in Maryland

- CO2 abatement cost
 - We have used these numbers to compute an estimate of the average CO2 abatement cost of 5 scenarios:
 - 1. Insulating walls
 - 2. Insulating the basement
 - 3. Replacing a standard gas boiler with a air-to-water heat pump
 - 4. Replacing a standard gas boiler by a gas condensing boiler
 - 5. Replacing a standard gas boiler with a biomass condensing boiler

Our best estimate of the average cost is **335€/tCO**₂

- Policy implications
 - The impact of the average investment is limited
 - which implies a very high CO2 abatement cost
 - This probably explains why homeowners are reluctant to invest, which leads to very high subsidy rates
 - Up to 100% for low-income households
 - Our estimate is an average that may hide important disparities => public intervention should be selective.
 - Targeting so-called deep renovation?
 - Home energy retrofit is an experience good, which partly explains low quality
 - A market for lemons (Akerlof)
 - The regulator shoud pay more attention to the supply-side of the home renovation market
 - Selective labeling of energy efficiency contractors
 - Promoting informational intermediaries (e.g. energy experts)

