

20th Florence Rail Forum

An RU perspective on European Digital Capacity Management Ulla Kempf | December 8th, 2020

The RFF coalition has committed to a rail model share of 30% by 2030 for which implementation of enabling key technologies is needed

Fields of action – Rail Freight Forward

Capacity is the most expensive recourse we have in rail freight and therefore to be used most efficiently

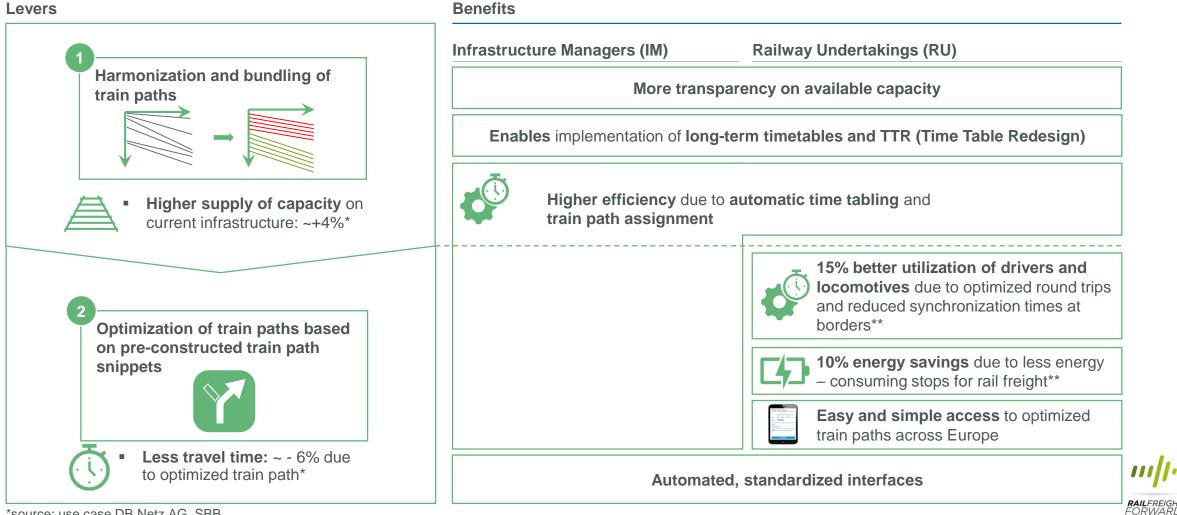
Capacity alignment is only a first step to foster international rail freight

To ensure European rail freight flows in the future, the sector needs

- a European capacity model defining required freight transport capacity along the vision of modal shift
- international capacity coordination between national MoTs/ IMs/ABs guaranteeing harmonized capacity in
 - Trains per hour
 - with defined times at neuralgic locations (e.g. border crossings)

new capacity allocation rules on routes with capacity shortage according to defined capacity needs (today passenger traffic has a systematic advantage, pre-arranged corridor paths are not sufficient for international transport needs)

Dimensioning I


Planning II

Safeguarding III

European Digital Capacity Management provides an up to today unused lever to sector efficiency

Levers and Benefits through the means of Digital Capacity Management

*source: use case DB Netz AG, SBB

** source: RU estimation based on use case DB Netz AG, SBB

Investment in Digital Capacity Management is equal to investment in physical infrastructure

Efficiency of Digital Capacity Management

High efficiency of investment in **Digital Capacity Management (DCM)** Initial investment for capacity increase of 4% on 50% of the network¹ Higher maintanance in **bn EUR** costs for physical infrastructure not accounted for 16 -97% ~0.5 New physical infrastructure Digital capacity management

Investment of roughly 500 Mio. EUR²

- Cost of connecting all 10 European countries (IMs and Rus) on the main freight corridors to DCM – first validation bottom-up by IMs and RUs
- Funding for upgrading of IT needs to be provisioned for each individual country

Investment with same effect as actual investment in new physical capacity

- Implementation of DCM with significantly lower lead-time than investment in new tracks
- Current financing model, leave IMs with little incentive to provide pan-European Digital Capacity Management
- Digital Capacity Management in Germany was treated as investment in physical infrastructure and consequently financed by corresponding means

ROUGH ESTIMATE

¹ Current European Railway net: 270,000 km, cost for additional capacity: 3 Mio. EUR/km

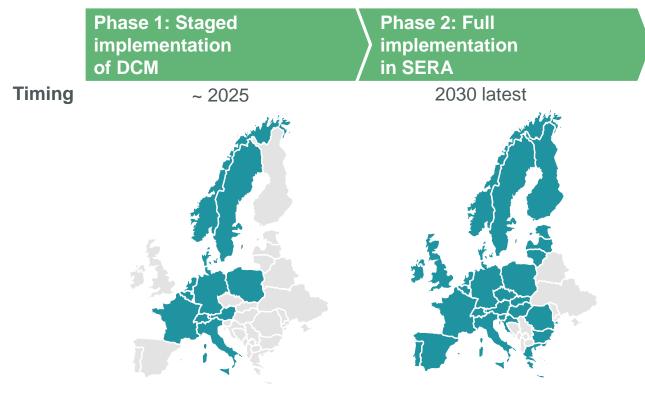
² The study "TTR migration concept and IT landscape" refers to 675 Mio. EUR, including costs for countries, which are not part of the first wave

SERA requires a harmonized European Digital Capacity Management, the opportunity to set this up is right now

Create tools and data that enable to develop and make use of capacity as a the European good it is

European rail capacity management is a key obstacle to deliver on successful growth of the rail sector

- Todays management of capacity outdates...
 - Heterogeneous and dispersed systems and processes for capacity management in Europe
 - 28+ legacy infrastructure management systems in Europe
- …leading to "technically possible" instead "best" result
 - Waste of capacity due to manual "make to order train paths that can not be optimized due to technical and timely restrictions
 - Suboptimal (cross-border international) train paths for freight
 - Long and not synchronised lead times for booking of train paths


... and therefore urgently needs updating to become digital

- Standardized interfaces and processes: implementation of TAF – TSI as scheduled until 2026
- Comprehensive digital representation of infrastructure for SERA
- Replacement of slow made-to-order processes with digitized, industrialized processes
- Step-change in process quality in terms of conflict elimination (e.g., infra works), speed, etc.
- Full transparency on capacity for multi-annual capacity modelling and rolling planning
- Easy allocation of integrated train path including international harmonization
- Providing means for more efficient investment targeting

DCM shall be developed across Europe in stages – accompanying the first wave of TTR in Central Europe

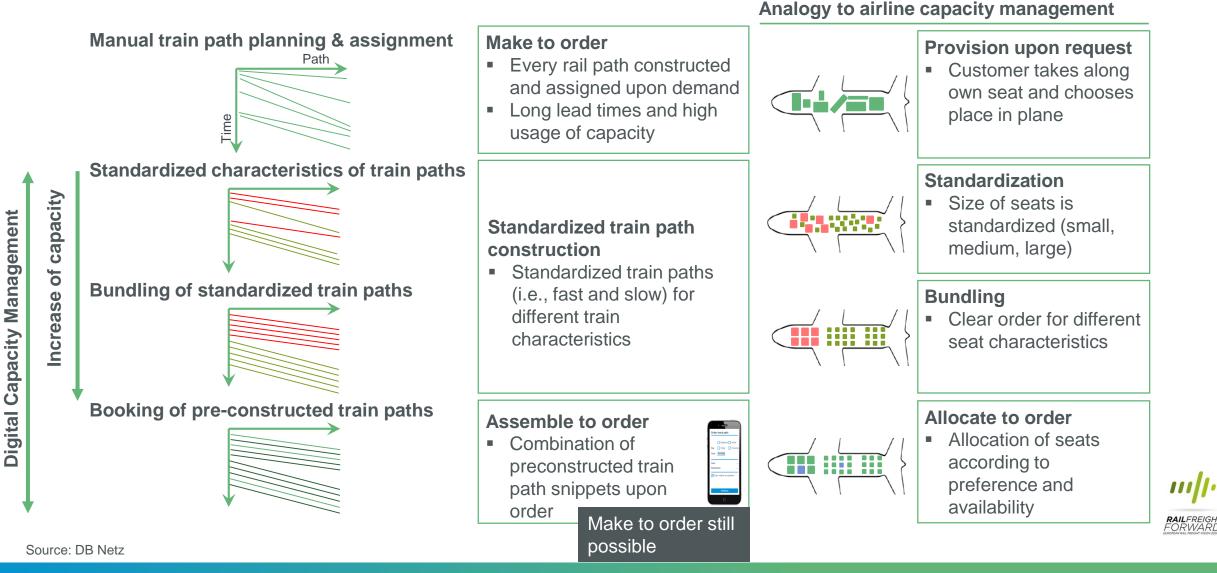
Most beneficial roll-out of DCM

- Introduce DCM in all countries, that are part of the first wave of TTR implementation along corridors (excluding Spain, due to different track gauge)
- Focus on capacity bottlenecks
- DCM in 28+ countries for comprehensive infrastructure representation
- Algorithmic optimization with focus on countries with capacity bottlenecks

oll	out Phase 1 PROPOSAL						
G	eneral principles						
•	Introduce DCM first in countries with highest network density (number of train paths, capacity restrictions)						
•	Apply DCM optimization logic in each country						
-	Add additional bordering countries until all countries are connected						
	nplementation in hand with existing TTR rogram led by RNE and supported by FTE						
•	DCM Migration Concept is based on and in line with the existing TTR Concept						
•	Project is organized by RNE and participation is open for all IMs/ABs						
•	Those IMs/ABs not participating in the first implementation wave will have the						

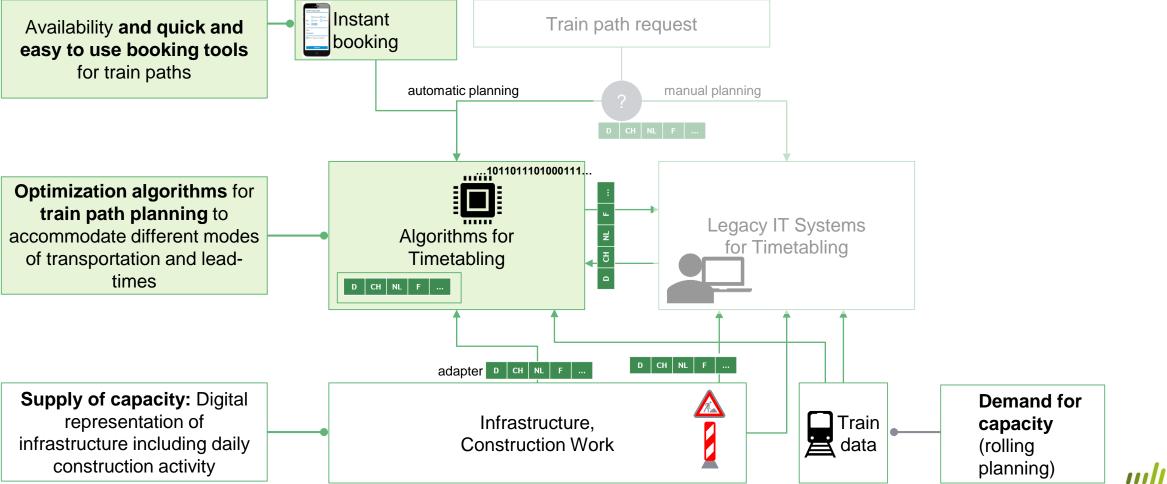
 Financial and all other resources necessary for implementation must be made available

possibility to join at a later stage



Contact: Ulla Kempf | SBB Cargo International AG ulla.kempf@sbbcargoint.com

Digital Capacity Management industrializes the process of rail path planning and assignment


8

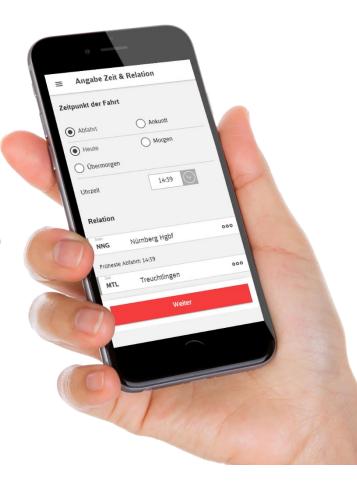
Steps in systemization of capacity management

Pan – European access to harmonized capacity needs supporting systems Reusable from existing

Sketch of architecture for Digital Capacity Management

Source: DB Netz AG

9


DCM projects

RAILFREIGH FORWARD

Click&Ride – the first innovative product based on DCM has been introduced to the railway market

Example for short-term train path booking at DB Netz

- DB Netz started in 2015 to digitize Time table planning
- First tangible product with Click&Ride launched end of 2019

- Planning horizon: min 45 min and max 48 hours before the desired departure of the train
- Train path request with desired departure and / or arrival time is possible
- Train path and timetable within max 3 minutes instead of max. 48 hours by combining preconstructed train path snippets
- Click&Ride is in full operation since December 17th 2019, more than 800 bookings via the app in the first two months Jan and Feb 2020
- Plan to automatise more than 200.000 path offers in 2020
- Implementation for yearly timetable in pipeline

5 interlinked key technologies are prerequisites for substantial modal shift

Key technologies required for modal shift

 Digital automated coupling (DAC) Automated coupling/ decoupling of assets Electricity and data bus line across train Automated brake test EP brakes 	ERTMS • One On Board Unit (OBU) to operate on main international freight relations equipped with technically harmo- nized ERTMS level 3	 Autonomous Train Operation (ATO) Autonomous driving with supervision by driver (GoA¹ 2) on long haul Autonomous driving without driver (GoA 4) on last mile/shunting yards 	 Digital Capacity Management (DCM) Step-change to automated and digitized train path construction and allocation Dedicated freight capacity Fast access to (inter-)national train paths with higher quality Expansion to real time capacity management (infrastructure operations) at later stage
 Train consistency check 			 Digital Platforms (DP) Creation of digital ecosystem for seamless operational data exchange between all players of Rail Freight Sector Innovation platform for 3rd parties

Full potential only reaped with coordinated, sector-wide rollout of all technologies across all geographies

These key technologies provide strong benefits in terms of product quality, cost reduction, and available capacity

Benefits of key technologies to rail

		Enabler	DAC	DP	ΑΤΟ	ERTMS	DCM
A	Higher RU product quality	RU	 Faster delivery, higher reliability and lower cost 	 Seamless operational data exchange across countries/companies 	 Higher reliability (~15%² higher punctuality) 	 Higher punctuality due to less failures of trackside signalling 	 ~-6%¹ travel time, better reliability (train path quality), instant capacity check, dedicated freight capacity
B	Cost reduction	RU/IM	 Improved utilization of personnel and assets 	 Reduction of manual data gathering efforts, better utilization of wagon/train capacity 	 ~10%^{3 4} lower cost for energy (GoA 2), reduced need for drivers in shunting and first/last mile 	 Decrease of infrastructure maintenance costs 	 Improved utilization of rolling assets and drivers (up to ~15%³) and rail path engineers
C	Better utilization of available infrastructure capacity	IM	 Higher speed, enabler for ERTMS level 3, more capa- city in marshalling yards/terminals 	 Optimized utilization of wagon capacity 	 ~10%^{2 3} on top of moving blocks (optimized distance between trains) 	 Level 3 moving blocks: +~40%^{2 3} 	 ~+4%¹ through optimized rail path planning/assignment
D	Better working conditions	RU/IM	 Higher safety and more ergonomic working conditions 		 Reduction of on- train operations and better utilization of bottleneck resource driver 	 Higher safety 	RAILFREIGHT

¹ DB Netz ² S2R ³ Expert interviews ⁴ ÖBB

² GoA = Grade of autonomy; GoA 2 supervision by driver, GoA 4 without driver