

Integrated planning of multi-energy systems: a comprehensive modelling framework

Aldo Bischi

Università di Pisa

Matteo Pozzi

Objectives

Partners

- Design of efficient transition paths for the energy systems of the future (2050), both at generation & infrastructure levels, in order to meet decarbonization targets
- Integrating the electricity, heat, gas and mobility sectors (exploiting synergies and flexibilities: sector coupling)
- Develop a decision support tool targeted at:
 - European and National System planners,
 - System Operators (TSOs & DSOs),
 - Multi-utilities

36 months total duration, started in November 2019

Another Tool?

Energy Modelling Platform for Europe (EMP-E V4) http://www.energymodellingplatform.eu/

Scope & Hybridization (Sectors) \rightarrow

Blue-EU, Green-national, Red-regional, Yellow-other © Reiner Lemoine Institut | CC BY-SA 4.0

3 general approaches:

- **Energy Network/Infrastructure ...** 1)lack of supply side/sector coupling
- 2) **Energy conversion units...**
- ... no optimization & network topology
- Scalability/Comprehensiveness design & operation.... 3)
- ... no network details & no user friendly

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 863922.

Comprehensive solution that attempts to integrate all 3 approaches (focusing on strategic/investment view point) **User Friendly**

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 863922.

Electric infrastructure,

Target area, e.g. Italy

Macro area, e.g. Tuscany

Transmission line

Transmission nodes, e.g. Large power plants Macro area clusters per technology

Distribution line

Distribution nodes, e.g. **Electric substations**

Gas infrastructure, e.g.

Power plants Power-to-gas Heat infrastructure, e.g. Boiler, Cogeneration **Commodity-X**, e.g. cooling Absorption chiller Compression chiller

PlaMES Tool Overview

The tool will have two main target uses:

Central Use (use case 1):

Plan the development of infrastructures at Transmission Levels + supply side mix that meets decarbonization targets Target Users:

- European and National Energy Agencies
- Transmission System Operators (TSOs)

Decentral Use (use case 2):

Energy Infrastructure Planning at Local Level + Synergies between different energy vectors at distribution level

Target Users:

- Local Authorities
- Distribution System Operators (DSOs)
- Multi-Utility Companies
- Original Equipment Manufacturer (OEMs) & Investors

Conclusions

Thank you for your attention

Aldo Bischi, aldo.bischi@ing.unipi.it

Matteo Pozzi, <u>matteo.pozzi@optit.net</u>

Follow us on: <u>https://plames.eu/</u>
<u>https://www.linkedin.com/company/plames/</u>
@plames2050

