

Energy Innovation Bootcamp, Florence School of Regulation

27 November 2019

RenovaBio, a LCFS: is it up to the challenge of decarbonising Brazil's transport sector?

PhD candidate: Danilo Perecin

Supervisor: Dr. Suani T. Coelho Institute of Energy and Environment, University of São Paulo, Brazil

Co-supervisor: Dr. Jeremy Woods Centre for Environmental Policy, Imperial College London, UK

Energy Innovation Bootcamp, Florence School of Regulation

27 November 2019

Energy Innovation Bootcamp, Florence School of Regulation

Energy Innovation Bootcamp, Florence School of Regulation

27 November 2019

Future of Biofuels

Energy Innovation Bootcamp, Florence School of Regulation

27 November 2019

Future of Biofuels

and the challenge ahead for the Brazilian biofuels industry, government, universities, and research centres: **innovation**

RenovaBio (LCFS)

its instruments and capacity to decarbonise Brazil's biofuels and transport sector

Energy Innovation Bootcamp, **Florence School of Regulation**

- Ethanol: phases
- 1970-80's: Government push 1) (Proálcool)
- 1990's: Liberalisation 2)
- 2000's: Euphoria 3)
- 2010 2014: Crisis 4)
- 2015 Today: Recovery 5)
- Biodiesel
- Blend mandate to fossil diesel 1) (2019: 11%)

Road transport fuel mix

("E100") Hydrated Ethanol

- Anhydrous Ethanol (Blend) Gasoline
- Natural Gas
- Biodiesel

Source: data from EPE (2019)

Biofuels production (billion litres)

Energy Innovation Bootcamp, **Florence School of Regulation**

- Ethanol: phases
- 1970-80's: Government push 1) (Proálcool)
- 1990's: Liberalisation 2)
- 2000's: Euphoria 3)
- 2010 2014: Crisis 4)
- 2015 Today: Recovery 5)
- Biodiesel
- Blend mandate to fossil diesel 1) (2019: 11%)

Biofuels production

Source: data from EPE (2019)

Energy Innovation Bootcamp, Florence School of Regulation

- Ethanol: Post-euphoria crisis
- 1) Gasoline price control and fiscal incentives reduction (inflation control + fiscal constraint)
- 2) Export expectations frustrated: domestic production (US), broader sustainability concerns (EU)
- 3) Unfavourable climate (2009-2011)
- 4) 2008 crisis: indebted companies facing higher cost of credit
- 5) Currency devaluation: US\$ denominated debt explosion = insolvency

- What does it take to recover ? (Nastari, 2014):
- 1) Certainty, stability, predictability
- 2) Adequate price signal
- 3) Pricing externalities (environmental benefits)
- Make the most of the sugarcane: 2nd gen. ethanol, high pressure CHP with solid residues, biogas replacing diesel – productivity increase and zero emissions by incentivising efficiency
- 5) Concept: LCFS of California

Sources: Rodrigues & Rodrigues (2018), FGV (2017)

Energy Innovation Bootcamp, Florence School of Regulation

27 November 2019

RenovaBio: The National Biofuels Policy

Goals

- 1) Deliver biofuels contribution to <u>Paris Agreement</u> targets
- 2) Promote an adequate expansion of biofuels, focussing on the regularity of the fuel supply by ensuring <u>certainty</u> for the fuels market
- 3) Induce energy <u>efficiency</u> improvements and the <u>reduction of</u> <u>GHG</u> emissions in the biofuels value chain

Instrument: Decarbonisation credits (CBio)

- 1) Life-cycle GHG assessment of each biofuel producer using real data input to government provided calculator
- 2) Emissions Reduction (per MJ) = $GHG_{FOSSIL FUEL} GHG_{BIOFUEL}$
- 3) CBio created based on ER and volume sold, meaning 1 ton of CO₂ reduced
- 4) Annual national targets for fuel supply Carbon Intensity determined for a 10 year period
- 5) Fuel distributors have a annual CBio purchasing requirement based on their market share

Energy Innovation Bootcamp, Florence School of Regulation

27 November 2019

RenovaBio: The National Biofuels Policy

Goals

- 1) Deliver biofuels contribution to <u>Paris Agreement</u> targets
- 2) Promote an adequate expansion of biofuels, focussing on the regularity of the fuel supply by ensuring <u>certainty</u> for the fuels market
- Induce energy <u>efficiency</u> improvements and the <u>reduction of</u> <u>GHG</u> emissions in the biofuels value chain

Instrument: Decarbonisation credits (CBio)

Energy Innovation Bootcamp, Florence School of Regulation

27 November 2019

RenovaBio: Carbon intensity targets

Energy Innovation Bootcamp, Florence School of Regulation

27 November 2019

Electricity supply 2018

Other fossil	
■ Coal	15% tossil
■ Natural Gas	lueis
Nuclear	3%
Other renewable	3%
■ Solar	<1%
Wind	8%
Sugarcane bagasse	6%
■ Hydro	65%

Source: data from EPE (2019)

Energy Innovation Bootcamp, Florence School of Regulation

27 November 2019

Where are emissions coming from? Can they be reduced?

Gasoline emissions = $87.4 g_{CO2}/MJ$

Ethanol emissions = $25 g_{CO2}/MJ$

62.4 g_{CO2}/MJ or 71% reduction

- Fertilisers ~30%
- pH correction ~15%
- Diesel consumption ~30%

Innovations in sight:

- 2nd generation ethanol
- Increase cogeneration efficiency and residues utilisation (e.g. straw)
- Incremental process improvements
- Biogas production
- CCS: potential for negative emission technology
- Agricultural innovation with new incentives (reducing GHG intensive inputs)

Source: illustrative data based on companies' Public Consultations for RenovaBio.

62.4 g_{CO2}/MJ or 71% reduction

Energy Innovation Bootcamp, Florence School of Regulation

27 November 2019

Where are emissions coming from? Can they be reduced?

Gasoline emissions = $87.4 \text{ g}_{\text{CO2}}/\text{MJ}$

Ethanol emissions = $25 g_{CO2}/MJ$

- Fertilisers ~30%
- pH correction ~15%
- Diesel consumption ~30%

Innovations in sight:

- 2nd generation ethanol
- Increase cogeneration efficiency and residues utilisation (e.g. straw)
- Incremental process improvements
- Biogas production
- CCS: potential for negative emission technology
- Agricultural innovation with new incentives (reducing GHG intensive inputs)

Great tool to identify emissions sources with incentives to mitigate, but must adapt to cover emission gaps

Will RenovaBio redefine R&D and project priorities or new plants design?

> Source: illustrative data based on companies' Public Consultations for RenovaBio.

IEEUSP INSTITUTE OF ENERGY AND ENVIRONMENT UNIVERSITY OF SÃO PAULO

Energy Innovation Bootcamp, Florence School of Regulation

Biofuels to deep decarbonisation: consequences

- 1) Explore **profound innovation** possibilities within the industry
 - RenovaBio: fit for incremental improvements only?
 - Where will industry revenues go? Will private sector fund R&D?
 - Are the targets (ergo the carbon price) enough?
- 2) A future **unique** transport system?

Imperial College

London

- Scale is reduced: will prices increase? Wil companies invest on ICE/ethanol vehicles? Does it affect innovation?
- Risk of lock-in? Is it associated with the fossil fuel industry?
- 3) Land use: reduce energy demand to avoid problems
 - Vehicle efficiency is key; Mass transit, bicycles
 - Could it go side-by-side with EVs?
- 4) Jobs, **national industry**, "perfect is the enemy of good"
 - Makes sense to wait until develop EVs infrastructure?

Photo: Marivaldo Oliveira, Folhapress

Energy Innovation Bootcamp, Florence School of Regulation

27 November 2019

Danilo Perecin daniloperecin@usp.br d.perecin19@imperial.ac.uk