Regulatory reforms for incentivizing the investments in innovative Smart Grid pilot projects in Europe: A regulatory factors study

Alexis Meletiou Co-Authors: Carlo Cambini, Ettore Bompard, Marcelo Masera

4th Conference on the Regulation of Infrastructures 12 June 2015

Research Question

<u>Global Issues:</u> The climate-change and the depletion of energy sources

<u>EU Energy Policy</u>: Wide energy targets for 27% improvements in the efficiency, 27% increase in the share of renewable sources and 40% reduction of the greenhouse gas emissions.

<u>New Investment Needs</u>: Transformation of distribution network into smart grid: €0.5 trillion to renew the electricity networks over the period of 2014 through 2035 (IEA 2014).

DSOs Role: Are the ones expected to carry the main investment burden.

<u>Regulation Role:</u> Regulation can have an important role to set up a favourable framework that fosters investments in smart grids.

RQ : "What are the regulatory factor-levels that can positively affect the investments in SG pilot projects in Europe?"

Study Overview

Among the variety of regulatory factors, the study is particularly concerned with three:

- Factor 1: DSO concentration factor: "how many regional monopolies will serve the overall demand for distributed power in a country's territory?".
- Factor 2: Type of regulation model: regulation models' capacity to induce cost efficiency, by providing relevant incentives to DSOs.
- Factor 3: Specialized Incentives: the stimuli mechanisms designed by regulation authorities for incentivizing innovative SG pilot projects.
- ❑ Answering the RQ the study attempts to provide valuable insights on the perceivable regulation reforms towards an updated, innovation-friendly regulation framework that will incentivize DSOs' investment activities in Europe.
- Two sets of data:
 - a database with 459 smart grid pilot Investments in Europe (EU-28, Switzerland and Norway).
 - a compiled list of **Regulatory factors** in Europe

Smart Grid pilot Investments

Methodology

- □ For each regulatory factor, individual <u>statistical hypothesis tests</u> are carried out for discovering the correlation between the level of SG investments in the European countries, and the respective regulatory factor-levels.
- □ To discover the difference between the groups by <u>comparing the means of the populations</u>
- **Carrying out a statistical hypothesis test requires the assessment of three Assumptions beforehand:**
 - Normal Distribution: Lack of confidence regarding the existence of normality, it was decided to carry out two different analyses;
 - a Parametric T-test
 - a Non-Parametric U-test.
 - Independent observations: None of the observations in one group is in any way related to the observations in the other groups so independency should be considered
 - Homogeneity of variances: All the samples have equal variances with one exception. In this case, it
 was applied an adaptation of T-test namely Welch's T-test.
 - A <u>one-tailed test</u> with two hypotheses has been considered:
- $H_0: \mu_1 \mu_2 = 0 \iff \mu_1 = \mu_2$ (null hypothesis)
- H_1 : μ_1 - μ_2 > 0 <=> μ_1 > μ_2 (alternative hypothesis)

The study considers a level of statistical significance $\alpha = 10\%$

DSO Concentration

□ "High": One DSO serving 99%-100% of the distributed power

Gradiant "Medium":

- -One dominant DSO, serves at about 80% of distributed power and several smaller DSOs the rest.
- -Three largest DSOs serving more than 60% of distributed power and several smaller DSOs the rest.
- "Low": Three largest DSOs deliver at about 50% of the distributed power.

Status Quo:

- ✓ 50% of the European markets are medium concentrated and only six high concentrated.
- ✓ Over the last years, Split-ups and merges is a common phenomenon(e.g. Romania, Denmark).

Results DSO Concentration

DSO Concentration												
	High (H)		Medium (M)		Low (L)		P-value T-test			P-value U-test		
	\overline{X}_H	n _H	\overline{X}_M	n _c	\overline{X}_L	n _c	μ_L vs μ_M	μ_{M} vs μ_{H}	$\mu_{\scriptscriptstyle L}$ vs $\mu_{\scriptscriptstyle H}$	μ_L vs μ_M	μ_{M} vs μ_{H}	$\mu_{\scriptscriptstyle L}$ vs $\mu_{\scriptscriptstyle H}$
€/Capita	2.02	7	2.89	15	8.30	8	1%	21%	2%	1%	40%	0%
€/GDP	103.9	7	120.2	15	206.0	8	6%	35%	10%	9%	35%	10%

L vs M and L vs H: Strong Evidence,

p-values 0%, 1%, 2% when €/Capita

L vs M and L vs H: Moderate Evidence,

p-values 6%, 9%, 10% when €/M GDP

REFORMS:

✓ Low concentrated distribution markets is expected to effectively induce investmentincentives for the implementation of SG pilot projects.

✓ Introduce horizontal unbundling processes may be subject to strong oppositions by DSOs or other energy stakeholders

Type of Regulation Model

- Incentive-based: any model where the regulator delegates certain pricing decisions to the firm and that the firm can reap profit increases from cost reduction.
- Cost-based: determines an allowed RoR on investment, and adjusts the company's price as its costs change to ensure a reasonable opportunity to earn the authorized return.
- □ **Hybrid:** Follow a cost-based approach for the treatment of CAPEX and an incentive-based approach for the treatment of OPEX.

Status Quo:

- ✓ 50% of the European countries apply an incentive based model,
- Only 6 countries apply Cost based regulation, among them Cyprus and Malta

Regulation Model Results

Regulation Model												
	Cost (C)		Hybrid (H)		Incentive (I)		P-value T-test			P-value U-test		
	\overline{X}_C	n _c	\overline{X}_{H}	n _H	\overline{X}_I	n,	μ_{H} vs μ_{c}	μ_H vs μ_I	μ _ι vs μ _c	μ_{H} vs μ_{c}	μ_H vs μ_I	μ_l vs μ_c
€/Capita	2.20	6	5.68	9	3.97	15	16%	22%	11%	20%	39%	18%
€/GDP	78.6	6	195.5	9	129.8	15	7%	11%	11%	10%	27%	4%

In both cases of normalisation, for the great majority of mean comparisons, T and U tests' p-values are high enough and far greater than α =10%. Nevertheless, there are two exceptions:

□ *I* vs *C* : Strong Evidence,

p-value= 4% , in the T test p-value= 11% (close to significant value too)

H vs C : Moderate Evidence,

p-value= 7%, 10%.

REFORMS:

- ✓ Incentive based regulation may offer the most favourable conditions, spurring the deployment of SG innovations in the network and increasing the corresponding investments.
- A hybrid model could be also effective for providing investment-incentives in SG but not as powerful as an incentive based scheme.

Specialized Incentives

- None: Countries where the SG investments are treated like other costs
- Extra WACC: The provision of higher rate of return: adding an extra component to the regulatory WACC
- ❑ Adj. Revenues: The provision of extra allowance or the adjustment of revenues within the regulation period.

Status Quo:

- ✓ Only 8 countries apply specialized Incentives
- Italy and Portugal are the only countries applying Extra WACC

Specialized Incentives Results

Specialized Incentives										
	Yes (Y)	No (N)		P-value T-test	P-value U-test				
	\overline{X}_{Y}	n _y	\overline{X}_N	n _N	μ_{y} vs μ_{N}	$\mu_{ m Y}$ vs $\mu_{ m N}$				
€/Capita	8.13	8	2.67	22	0%	0.2%				
€/GDP	259.6	259.6 8 9		22	1%	0%				

 For both cases of normalisation the p-values are extremely low and no more than 1%. Thus the samples provide strong evidence against rejecting the null hypothesis of equality of population means

REFORMS:

✓ The adoption of specialised incentive mechanisms by regulation (such as the adoption f an extra WACC or adjusted revenues) is rather successful in triggering SG investments.

Limitations & Future Work

- **1.** Limit.: The study is based on the actual European countries situation thus it can be considered to be valid in short term horizon.
- **2.** Limit.: The tests results pointed out the sensitivity of the analysis in the factors employed for the normalization of SG investments
- **FW**: Performance of an identical analysis but with the use of technical normalizing factors : electricity consumption (TWh) or the length of the electricity grid (km)
- Limit.: Lack of accurate data about the precise contribution of DSOs in the budget of SG projects, we use the overall budget of Smart grid project at country level
 FW: Consider the DSOs' contribution in SG projects for the values as main dependent variable.

Thank you

Alexis Meletiou alexis.meletiou@jrc.ec.europa.eu

Smart Electricity Systems http://ses.jrc.ec.europa.eu/