Disruptive Technologies in Air Traffic Management

OCTOBER 21, 2016

Advanced Air Traffic Services – Main themes for Thales

- Enhanced arrival and departure operations (PJ01)
- Extended Arrival Management with overlapping AMAN operations and interaction with DCB
- Use of Arrival and Departure Management Information for Traffic Optimization within the TMA
- Dynamic and Enhanced Routes and Airspace
- Trajectory and performance-based Free Routing (PJ06)
 - > Optimized traffic management to enable Free Routing in high and very high complexity environments
 - Management of Performance Based Free Routing in Lower Airspace
- Separation Management En-Route and TMA (PJ10)
 - ➤ High Productivity Controller Team Organisation
 - > Flight Centric ATC
 - Collaborative Control
 - Improved Performance in the Provision of Separation
 - Advanced Separation Management
 - > IFR RPAS Integration

High Performing Airport Operations - Main themes for Thales

- Increased Runway and Airport Throughput (PJ02)
 - Improved access into secondary airports in LVC
 - Wake Turbulence Separation Optimisation
 - Traffic optimisation on single and multiple runway airports
- Integrated Surface Management (PJ03a)
 - > Enhanced Guidance Assistance to Aircraft and Vehicles on the Airport Surface Combined with Routing
- Airport Safety Nets (PJ03b)
 - > Enhanced airport safety nets for controllers
- Total Airport Management (PJ04)
 - Enhanced Collaborative Airport Performance Planning and Monitoring
 - ➤ Enhanced Collaborative Airport Performance Management
- Remote Tower services for multiple airports (PJ05)
 - Remotely Provided Air Traffic Service for Multiple Aerodromes
 - Remotely Provided Air Traffic Services from a Remote Tower Centre with a flexible allocation of aerodromes to Remote Tower Modules

Enabling Aviation Infrastructure (1) - Main themes for Thales

Air Vehicle Systems (PJ13)

➤ Airborne Detect and Avoid Systems supporting integrated RPAS operations

CNS (PJ14)

- > Future Satellite Communications Datalink
- Completion of AeroMacs development
- Surveillance Performance Monitoring
- New use and evolution of Cooperative and Non-Cooperative Surveillance

Common Services (PJ15)

- Sub-Regional Demand Capacity Balancing Services
- Delay Sharing Services
- Trajectory Prediction Service
- Data Centre Service for Virtual Centres
- Static Aeronautical Data Service
- Aeronautical Digital Map Service

THALES

Enabling Aviation Infrastructure (2) - Main themes for Thales

- CWP & Virtual Centre (PJ16) Thales Project Coordinator
 - Service Interface Definition & Virtual Centre Concept
 - Controller productivity (new means of human machine interface)
- SWIM Infrastructures (PJ17) Thales Project Coordinator
 - > SWIM TI Purple Profile for Air/Ground Advisory Information
 - > SWIM TI Green Profile for G/G Civil Military Information Sharing
- 4D Trajectory Management (PJ18)
 - Integration of trajectory management processes in planning and execution (incl. FO-based IOP)
 - > Management and sharing of data used in trajectory (AIM, METEO)
 - Performance Based Trajectory Prediction

New Topics in SESAR 2020

- Many SESAR 2020 topics/solutions are a natural continuation / enhancement of SESAR 1 concepts and enablers
- Several are new. Out of these we have picked a few high-profile ones that are potential game changers for the community or for Thales
- Virtual Centres
- Remote Towers for Multiple Airports
- Total Airport Management
- Cybersecurity
- Remotely Piloted Aircraft Systems (RPAS)

SESAR 2020 – New Topics 1- Virtual Centres

Virtual Centres in SESAR 2020

- A general context and ANSP pressure calling for
- > more reliance on open standards and IP as opposed to legacy and proprietary interfaces
- ➤ A component-based modular design allowing "integrator ANSPs" to procure their system from several vendors
- Decoupling between CWP and ATM Data Service Provision (ADSP) initiated in SESAR 1
 - ➤ Initial modelling of certain very basic ATC use cases + initial feasibility demonstrations (remote CWP-FDP connection)
- SESAR 2020 to build upon this first step and
 - > Further develop modelling and standardisation of CWP /ADSP interfaces
 - Address more advanced virtual centre applications
 - Develop virtual centre concepts, use cases, business models and technical definition
 - Prototype and validate certain selected use cases
 - Scope extension to Voice Communications, ATFM, TWR, ASM, MET
 - Large Scale Demonstration foreseen in Wave 2
- Virtual Centre concepts can apply to a wide range of application contexts and use cases e.g.
 - > Training, Contingency, Operations
 - > Shared back room, shared contingency facilities, load-balancing, consolidation between centres

Example 1: Shared Data centres

Several ACCs share a common data centre

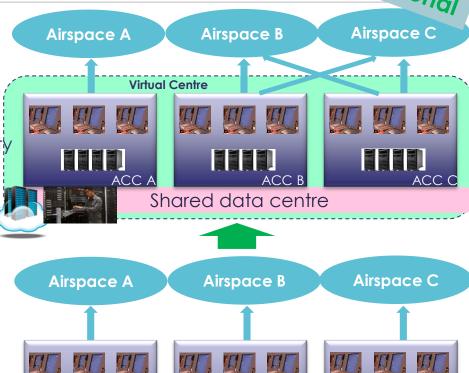
This shared back room can either be located at one of the sites or remotely located in a cloud facility

Benefits:

- Savings on backroom real estate, equipment and maintenance staff
- Easier management of software upgrades

Shared data centre

Example 2: Load balancing between centres


Operationa

Several ACCs operate as a virtual centre

- Airspace to ACC allocation can be dynamically modified within the virtual centre
- A shared data centre can facilitate this flexibility

Benefits:

- Possibility to dynamically redistribute load between ACC e.g. during overload situations
- Possibility to shut down ACCs at night
- Supports FAB consolidation and SES objectives

THALES GROUP INTERNAL

Thales' key partners and focus areas for virtualisation in SESAR 2020

COOPANS

- > Key focus: Shared Data Centres, Training, Contingency
- Hungarocontrol, skyguide, Frequentis (Voice Communications)
 - Key focus: Load balancing / Sector delegation between ATSUs, including related voice and data distribution aspects
 - ➤ Large Scale Demonstration intentions in a Wave 2 VLD across Switzerland and Hungary

THALES GROUP INTERNAL

DSNA

➤ Key focus: CWP-ADSP decoupling, FDP/Coflight as a Service

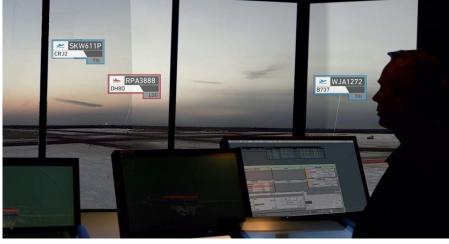
SESAR 2020 – New Topics 2- Remote Towers

Remote Tower in SESAR 2020

- Enables Air Traffic Control services from a remote location with no direct "out of the window" view of the airport, instead of from the conventional ATC tower
- Utilizes innovative technology such as high resolution cameras, sensors and local processing linked to a remote ATC automation system
- Provides displays and controls for the air traffic controller to deliver the same ATC services as if at the conventional tower
- Offers potential to consolidate multiple airport ATC operations into a single remote tower center

Deliver reliable and safe ATC services more efficiently leveraging today's modern technology and communication capabilities

With Hungarocontrol


RT for Budapest airport (medium) and two small regional airports

Focus on supervisor position tasks and functions (optimum dynamic airport allocation vs safety...), RTC coupling

With Oronavigacija

- Up to 7 small Lithuanian airports interconnected via a wideband comm. Network
- Possible extension to Polish airports (PANSA)
- Other partners: Searidge for video, Frequentis for voice communications

TopSky ATC Remote Tower

SESAR 2020 – New Topics 3- Total Airport Management



Integration of AOCC (Landside) & ATM platform (Airside)

Partner:

- Coordinated planning of airport processes on landside and airside between AOCC and ATC/ATFM tools
- > Definition of relevant KPIs in order to monitor and benchmark airport Performance

THALES

Total Airport Management - Airport Turnaround optimisation

ECOsystem cloud-based services provide processed Flow/Capacity and MET data relevant for the airport environment

ECOsystem naturally complements an integrated **AOCC/ATM** solution to support improved planning and optimisation of airport turnaround

One Tab Per resource category - Runway/Airway/Waypoint/Sector AIRPORT VIEW Left Frame - Air Situation Display Airport/Approach/EnRoute Adjustable Zoom Level

EC SYSTEM

is also used in other SESAR 2020 projects, mostly related to Optimised Airspace User Operations, Airspace Management and **Dynamic Capacity Balancing**

Right Frame - Resource Occupation Per Time Period

SESAR 2020 – New Topics 4- Cybersecurity

- A key requirement to be addressed in each individual SESAR 2020 project
- All the more important in the context of increased reliance on open standards such as IP-based communications as opposed to proprietary or ATM dedicated interfaces

- Particularly relevant for architectures with exposed cyber security posture including WAN, SWIM, Virtualisation and Remote Services
- PJ19 (Content integration) is expected to play a central role in defining a SESAR 2020 CyberSecurity Framework including guidance and/or minimum set of requirements
- Still unclear and to be secured how sensitive issues will be handled e.g. feared events, potential attack vectors, mitigation means if any

SESAR 2020 - New Topics 5- RPAS

- SESAR 2020 IR&V to address the integration of RPAS traffic into non-segregated controlled airspace
 - ➤ Substantial participation of Thales Airborne Systems for Detect & Avoid technologies Issue with PJ13 not selected
 - ➤ Limited Thales Air Systems involvement as the assumption is that ATCOs will manage RPAS traffic exactly in the same way as regular traffic => limited impact on our ATC systems
 - Will nevertheless review / monitor progress for any specific requirements e.g. linked to limitations in manoeuverability, speeds climb performance
- SESAR 2020 Exploratory Research (ER) to address UAS Traffic Management (UTM) in Very Low Level airspacecall ongoing
- Second ER call regarding RPAS in Q4/2016

