Contract choice and cost efficiency: the French urban public transport case

Joanna Piechucka*

*Paris School of Economics / Microeconomix

Conference on the Regulation of Infrastructures, June 2015

Objective

The main objective of the paper is to study the impact of different regulatory contracts on the cost efficiency of public transit systems

- A positive analysis approach is taken to study the determinants of regulatory contract choices that in turn impact the operating costs of urban public transport operators in France
- The endogeneity of regulatory contract choices is a central feature of the analysis

The industry

Organizational background

- ► The local public authority is responsible for organizing urban public transport
- ▶ It can provide the service itself or delegate this task to a private or public-private transport operator (90%)
- ▶ In the case of delegation a public-private partnership is established and regulated through an agreement

Regulatory contracts

- ▶ The agreement specifies the characteristics of the service to be provided, the resources put at the disposal of the operator and the conditions of subsidizing the service
- ► The two main contract types observed in the industry are fixed-price and cost-plus contracts

Principal-Agent framework

- The Principal asks the Agent to produce a given level of output in exchange for a reimbursement and this relationship is regulated by a contract
- Asymmetric information may give rise to two phenomena:
 - Operators have better experience and information on the costs of providing the service than local authorities (adverse selection)
 - ► The non-observability of effort undertaken by the operator on the delegated operation of the transport service (moral hazard)
- Regulatory contracts could affect the cost-reducing effort undertaken by the operator

Econometric approach

Endogenous treatment-effects model

Translog cost function

$$InC_{it} = InC(Y_{it}, w_{it}, Z_{it}, DT_t; \beta) + (\alpha_i + \xi FP_{it}) + \varepsilon_{it}$$

 FP_{it} is a binary endogenous variable that stems from an unobservable latent variable

$$\mathit{FP}^*_{it} = \gamma_0 + \gamma_{\mathit{priv}} \mathit{Priv} + \gamma_{\mathit{K}} \mathit{Keolis}_{it} + \gamma_{\mathit{T}} \mathit{Transdev}_{it} + \gamma_{\mathit{v}} \mathit{Veolia}_{it} + \gamma_{\mathit{N}} \mathit{InN}_{it} + \gamma_{\mathit{t}} t_{it} + \eta_{\mathit{it}}$$

• The value of FP_{it} is taken accordingly to the rule:

$$FP_{it} = egin{cases} 1 & \textit{if } FP_{it}^* > 0 \\ 0, & \textit{otherwise} \end{cases}$$

Data and variables

Original database of a 16-year panel of 103 bus networks in France for the years 1995-2010 created from an annual survey conducted by CERTU, GART and UTP

- Cost function details
 - Operating costs (C)
 - Quantity of output (Y)
 - ▶ Input prices (w_L, w_m)
 - Commercial speed (CS)
 - Network size (N)
- Contract choice details
 - Contract type (FP)
 - ► Affiliation to the three major groups (*Keolis*, *Veolia*, *Transdev*)
 - ► Legal entity of the operator (*Priv*)
 - ▶ Network size (N)

Main results

Parameter estimates of the cost function

Variables	Exogenous contract type			Endogenous contract type		
variables	Estima	ates	St. Error	Estimates		St. Error
First order terms						
ln(Y)	0.269	***	0.025	0.230	***	0.020
In(N)	0.106	***	0.013	0.095	***	0.012
In(CS)	-0.112	**	0.060	-0.187	***	0.052
$ln(w_L)$	0.903	***	0.017	0.872	***	0.016
FP	-0.044	***	0.014	-0.236	***	0.013
Second order terms	yes			yes		
Time dummies	yes			yes		
Network dummies	yes			yes		
Sample size		1349				1349

Note: ***: Significant at 1%, **: Significant at 5%, *: Significant at 10%.

Operating costs and labor price were normalized to material costs to account for homogeneity of degree one.

As all variables were normalized to their sample mean, the first-order terms can be interpreted as cost elasticities.

Main results

Marginal effects of the contract choice function

Variables		Endogenous contract type				
	Margin	al effects	St. Error			
Priv	0.113	***	0.034			
Keolis	0.102	***	0.024			
Veolia	0.035		0.026			
Transdev	0.272	***	0.014			
N	-0.054	***	0.015			
t	0.023	***	0.002			

Note: ***: Significant at 1%, **: Significant at 5%, *: Significant at 10%.

Summary

- The results show a significant and important impact of regulatory choices on the operating costs of transport operators
 - Given similar network characteristics, networks operated under fixed-price contracts appear to exert approximately 20% lower costs
- Ignoring the endogeneity of contract choice could lead to undervaluing the importance of regulatory incentives for the urban transport network