

Vertical integration in the e-commerce sector

Claire Borsengerger (La Poste), **Helmuth Cremer** (IDEI), Denis Joram (La Poste) and Jean-Marie Lozachmeur (IDEI)

26th Conference on Postal and Delivery Economics Split, May 30- June 2, 2018

Introduction

- We study the implications of *vertical* integration in the e-commerce sector.
- Specifically, we consider the possibility that a (major) retailer and/or a platform buys one or several of the parcel delivery operators, or sets up its own delivery network.
- *Horizontal* mergers are typically considered as "suspicious" and potentially anti-competitive.
- Literature on *vertical* mergers yields more mixed results.

- Potential benefits:
 - reduction of transaction costs,
 - elimination of double marginalization.
- But it also involves the danger of "foreclosure".
- Concept covers a wide range of anti-competitive practices, including the extension of market power in one market segment (upstream or downstream) to a different market segment, the possibility to raise competitor's cost, etc.
- In the postal sector these issues are particularly relevant. Some big retailers/platforms already have significant market power in their relevant markets, which gives them monopsony power towards parcel delivery operators.

- We use a simple two-stage Cournot model to study the implication of vertical integration in different scenarios.
- First, we assume that the integration of a retailer will lead to an integrated monopoly, and compare the independent oligopoly to the integrated monopoly.
- Second, we study integration when the number of active firms is endogenous. For some range of fixed costs the integrated monopoly is indeed the only sustainable equilibrium induced by the integration of a single retailer.
- Third, we account for a specific feature of the delivery sector by distinguishing between urban (low cost) and rural (high cost) customers. We consider a scenario where the integrated operator delivers only to urban customers, while relying on a delivery operator for the rural customers.

Independent vs integrated operators

- Present two examples: linear demand and constant elasticity demand (each with constant marginal cost)
- First concentrate on surplus, which does not account for fixed costs. These will be reintroduced and included in welfare analysis.
- With **linear demand** independent operators yields a larger output than the integrated solution if and only if

$$\frac{I}{I+1}\frac{J}{J+1} > \frac{N}{N+1}.$$

- violated for J = 2, I = 2,
- to obtain a better solution than under the integrated monopoly it takes at least 3 retailers and 3 delivery operators.

- With **constant elasticity demand (CED)** the independent oligopoly always yields the larger surplus.
- Intuitively, CED leads to more intense competition so that pressure on the price outweighs the cost of double marginalization even for a duopoly.

Endogenous number of firms

- Fixed costs:
 - integration may induce exit,
 - are accounted for in welfare.
- Interesting case: fixed costs
 - are sufficiently large to induce exit of all independent firms,
 - but not too large so that higher surplus in independent oligopoly outweighs replication of fixed costs.
- \bullet Illustrative example with CED, $\varepsilon = 1.1$

scenario	3*3	1i, 2r, 2o	1i, 1r, 20	1i, 2r, 10	1i, 1r, 10	1i
Total output	3.72	4.23	3.27	3.07	2.42	0.63
Total surplus	10.84	10.91	10.76	10.72	10.56	9.46
Prof. int.	_	0.259	0.39	0.43	0.539	0.86
Prof. ret.(s)	0.114	0.064	0.14	0.030	0.066	
Prof. d.o.(s)	0.079	0.064	0.05	0.167	0.122	_

- Integration of a single firm and the subsequent changes in market structure thus lead to a welfare loss if the following three conditions hold: (i) 1.38 > 2 * G_j + 2 * F_i, (ii) G_j > G_{min} = 0.066, and (iii) F_i = F_{min} > 0.064.
- The first condition is necessarily satisfied if 3*3 is sustainable.
- Relevant range is larger the smaller ε .

Multiple integration

Scenario	3i	2i, 1r, 10	2i
Total output	5.53	4.88	4.23
Total welfare	11.03	10.98	10.91
Profit integrated	0.12	0.18	0.26
Profit retailer(s)		0.03	
Profit delivery operator(s)		0.04	

• For any given number of firms multiple integration is welfare superior.

Extension: two delivery areas

- Two types of customers according to their location: urban or rural.
- Delivery costs are larger for rural than for urban customers.
- Delivery operators (when independent) charge a uniform delivery rate and retailers a uniform price.
- A vertically integrated firm on the other hand delivers only in urban areas.

- Urban and rural customers have identical demand functions; their shares are α^U and $\alpha^R = 1 \alpha^U$.
- Total demand is then given by $X(p) = \alpha^{U}X(p) + \alpha^{R}X(p)$.
- Rural and urban deliveries involve specific fixed costs denoted by F_i^U and F_i^R . Marginal delivery costs of delivery operator *i*, are denoted k_i^U and k_i^R .

Illustration

Parameters: $k_U = 0.05, k_R = 0.1, \alpha^R = 0.25, c = 0.1, p(X) = X^{-1/\varepsilon}, \varepsilon = 1.11.$

Scenario	2*2	Full int. (1i+1r+1o)	Urban int.
Total output	1.99	2.22	0.65
Uniform delivery rate t	0.19	0.26	0.80
Total surplus	10.39	10.47	9.48
Prof. integrated	_	0.53	0.55
Prof. ret.(s)	0.24	0.06	0.03
Prof. d.o.(s)	0.13	0.12	0.27

- Urban integration decreases surplus even when it increases under full integration.
- Two conflicting effects (studied analytically in the paper):
 - $-\operatorname{increases}$ competitors cost,
 - eliminates double marginalization for integrated urban delivery.
- It is indeed optimal for integrated firm to integrate urban delivery only.
- Intuitive, but not *a priori* obvious because the rural delivery rate faced by the integrated firm is subject to a markup (it is above the firm's marginal cost).

Summary and conclusion

- Comparison between independent oligopoly and integrated monopoly involves a tradeoff between competition and double marginalization which will have the opposite effect.
 - No general result, but with linear demand we need at least 3 firms (upstream and downstream) for oligopoly to yield larger surplus.
 - With CED this is always true.

- When the number of firms is endogenous:
 - while the integration of a single retailer-delivery operator pair may initially be welfare improving, the resulting market structure may not be sustainable,
 - there exist a range of fixed costs for which the integrated monopoly emerges (following a single integration) and is welfare inferior to the initial independent equilibrium even when the reduction in the number of fixed costs is taken into account,
- Multiple integration is typically welfare superior (for a given total number of firms) to the integration of a single retailer-delivery operator.

- When customers differ according to their location, urban or rural, involving different delivery costs:
 - urban integration is more likely to have an adverse effect on welfare than full integration,
 - we provide examples where the integrated firm finds it beneficial not to deliver in rural areas, even though the operators' delivery rate will include a markup above marginal cost.